artificial intelligence
on the dragon computer

make your micro think

keith and steven brain

artificial intelligence
on the dragon computer

make your micro think

keith and steven brain

First published 1984 by:

Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street.

London WQ2R 3LD

Copyright © Keith and Steven Brain, 1984

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval sysiem, or transmitied in any form or by anv means,
elecironic, mechanical, photocopying, recording and/or otherwise. with-
out the prior written permission of the Publishers.

Briush Library Cataloguing in Publication Data
Brain, Keith
Artificial intelligence on the Dragon Computer
I. Artificial intelligence ~ Data processing
2. Dragon 32 (Computer)
I. Title II. Brain. Steven
001.530285404 0336

ISBN 0-946408-33-5

Cover design by Graphic Design Ltd.

Illustration by Stuart Hughes.

Typeset by V & M Graphics Ltd, Aylesbury., Bucks.
Printed in England by Short Run Press Ltd, Exeter.

CONTENTS

Page

Introduction Vil
1 Artificial Intelligence |

2 Just Following Orders S

3 Understanding Natural Language 21

4 Making Reply 37
S Expert Systems 55

6 Making Your Expert System Learn for Itself 71

7 Fuzzy Matching 85

8 Recognising Shapes 97

9 An Intelligent Teacher 109

10 Putting It All Together 115

il

Contents in detail

CHAPTER 1

Artificial Intelligence
Fantasy — reality: two-way conversations. robots, expert systems.

CHAPTER 2

Just Following Orders

Preset orders and fixed responses — DATA arrays expanding the
vocabulary — removing redundancy — abbreviated commands — partial
matching — sequential commands.

CHAPTER 3

Understanding Natural Language

Dealing with sentences — subjects, objects. verbs, adjectives. adverbs —
punctuation — a sliding search — rearranging the word store array.

CHAPTER 4
Making Reply
Getting more sensible replies — making logical decisions before replying —
choosing the correct subject — problems with objects — changing tense.

CHAPTER 5

Expert Systems

How an expert works — simple problems — more difficult problems —
including pointers — sequential and parallel branching — checking how
well the answers match the data better in bits.

CHAPTER 6

Making Your Expert System Learn for Itself

Letting the computer work out its own rules for two objects — a wider
spectrum — watching what happens.

Artificial Intelligence on the Dragon

CHAPTER 7
Fuzzy Matching

Recovering information from the human mind — Soundex Coding — a
computer program for converting names — retrieving information,

CHAPTER 8

Recognising Shapes

Simulating the action of a light sensor inserting into sentences — a
branching short cut.

CHAPTER 9

An Intelligent Teacher

Questions and answers — keeping a score shifting the emphasis of
questions to areas of difficulty making questions easier or harder.

CHAPTER 10
Putting It All Together

Making conversation with the computer — making decisions, cost arrays
and profit arrays — the Computer Salesman.

vi

Introduction

Artificial Intelligence is undoubtedly an increasingly important area in
computer development which will have profound effects on all our lives in
the next few decades. The main aim of this book is to introduce the reader
to some of the conceptsinvolved in Artificial Intelligence and to show them
how to develop ‘intelligent’ routines in BASIC which they can then
incorporate into their own particular programs. Only a superficial
knowledge of BASIC is assumed, and the book works from first principles
as we believe that this is essential if you are really to understand the
problems involved in producing intelligence. and how to set about
overcoming them.

The basic format of the book is that ideas are taken and suitableroutines
built up step by step, exploring and comparing alternative possibilities
wherever feasible. Rather than simply giving you a series of completed
programs, we encourage you to experiment with different approaches to let
you see the results for yourself. Detailed flowcharts of most of the routines
are included. The main empbhasis in the routines is placed on the Al aspects
and we have therefore avoided ‘tartingup’ the screen display as this tends to
obscure the significance of the program. In places you maynoticethat odd
lines are redundant. but these have been deliberately included in the
interests of clarity of program flow. As far as possible, retyping of lines is
strenuously avoided but modification of lines is commonplace. All listings
in the book are formatted so that they appear as you will see them on the
screen. In most cases, spaces and brackets have been used liberally to make
listings easier to read but be warned that some spaces and brackets are
essential so do not be tempted to remove them all. All routines have been
rigorously tested and the listings have beenchecked very thoroughly so we
hope that you will not find any bugs. It is a sad fact of lifethat most bugs
ariseas aresultof ‘tryping mitsakes’ by theuser. Semi-colons and commas
may look very insignificant but their absence can have very profound
effects!

Artificial Intelligence is increasing in importance every day and we hope
that this book will give you a usefulinsight into the area. Who knows — if
you really work at the subject you might be able to persuade your machine
to read our next book for itself!

Keith and Steven Brain
Groeswen, January 1984

CHAPTER 1
Artificial Intelligence

Fantasy

For generations, science fiction writers have envisaged the development of
intelligent machines which could carry out many of the functions of man
himself (or even surpass him in some areas), and the public image of
Artificial Intelligence has undoubtedly been coloured by these images. The
most common view of a robot is that it is an intelligent machine of generally
anthropomorphic (human) form which is capable of independently
carrying out instructions which are given to it in only a very general
manner.

Of course, most people have ingrained Luddite tendencies when it comes
to technology so in the early stories these robots tended to have a very bad
press, being cast in the traditional role of the ‘bad guys' but with near-
invincibility and lack of conscience built in. The far-sighted Isaac Asimov
wove a lengthy series of stories around his concept of ‘positronic robots’
and was probably the first author really to get to grips with the realities of
the situation. He laid down his famous ‘Three Laws of Robotics’ which
specified the basic ground rules which must be built into any machine
which is capable of independent action — but it is interesting to note that he
could not foresee the time when the human race would accept the presence
of such robots on the earth itself.

‘Star Wars’ introduced the specialised robots R2D2 and C3PO, but we
feel that many of their design features were a little strange. Perhaps there is
an Interplanetary Union of Robots, and a demarcation dispute prevented
direct communication between humans and R2D2. In ‘The Stepford
Wives’, the local husbands got together and had the (good?) idea of
converting their wives into androids who automaticaily did exactly what
was expected of them, but the sequel revealed the dangers of the necessity
to continuously reinforce with an external stimulus! Perhaps one hope for
mankind is that any aliens who chance upon us will not have watched
‘Battlestar Galactica’, and will therefore build robots of the Cylon type
who, rather like the old Space Invaders, are always eventually defeated
because they are totally predictable.

Of course intelligent computers also appear in boxes without arms and
legs, although flashing lights seem obligatory. Input/output must
obviously be vocal but the old metallic voice has clearly gone out of fashion

Artificial Intelligence on the Dragon

in favour of some more definite personality. If all the boxes look the same
then this must be a good idea, but please don’t make yours all sound like
Sergeant-Major Zero from ‘Terrahawks’! Michael Knight's KITT sounds
like a reasonable sort of machine to converse with, and it is certainly
preferable to the oily SLAVE and obnoxious ORAC from ‘Blake’s Seven'.
ORAC seemed to pack an enormous amount of scorn into that little
perspex box, but other writers have appreciated the difficulties which may
be produced if you make the personality of the machine too close to that of
man himself.

In Arthur C. Clarke’s *200]: A Space Odyssey'.the ultimately-intelligent
computer HAL eventually had a nervous breakdown when he faced too
many responsibilities; but in ‘Dark Star’ the intelligent bomb was quite
happy to discuss Existentialism with Captain Doolittle but was unwilling
to deviate from his planned detonation time, although still stuck in the
bomb bay. In ‘The Restaurant At The End of The Universe’, the value of
the Sirius Cybernetics Corporation Happy Vertical People Transporter
was reduced significantly when it refused to go up as it could see into the
future and realised that if it did so it was likely to get zapped; and the Nutri-
Matic Drinks Synthesiser was obviously designed by British Rail Catering
as italways produced a drink that was ‘almost, but not quite, entirely unlike
tea'.

More worrying themes have also recently appeared. The most significant
feature of ‘Wargames’ was not that someone tapped into JOSH UA (the US
Defence Computer), but that once the machine started playing
thermonuclear war it wouldn’t stop until someone had won the game. And
in “The Forbin Project’ the US and Russian computers got together and
decided that humans are pretty irrelevant anyway. Of course, if you are
Marvin the Paranoid Android and have a brain the size of a planet and a
Genuine People Personality, you can succeed without weapons by
confusing the enemy machine into shooting the floor from under itself
whilst discussing your personal problems.

Reality

The definition and recognition of machine intelligence is the subject of fast
and furious debate amongst the experts in the subject. The most generally-
accepted definition is that first proposed by Alan Turing way back in the
late 1940s when computers were the size of houses and even rarer than a
slide-rule is today. Rather than trying to lay down a series of criteria which
must be satisfied, he took a much broader view of the problem. He
reasoned that most human beings accept that most otherhumanbeingsare
intelligent and that therefore if a man cannot determine whether he is
dealing with another man (or woman), or only with a computer, then he
must accept that such a machine is intelligent. This forms the basis of the

Chapter | Artificial Inielligence

famous ‘Turing Test’, in which an operator has to hold a two-way
conversation with another entity via a keyboard and try to get the other
party to reveal whether itis actually a machine or just another human being
— very awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carry on by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantly to find the secret, apparently
without success. However after some time the interviewer returns, shakes
him by the hand, and congratulates him with the words ‘Well done, old
man, the machine couldn’t tell if you were human so you are just what we
need as one of Her Majesty’s Tax Inspectors!’

Everyone has seen from TV advertisements that the use of computer-
aided design techniques is now very common, and thatindustrial robots are
almost the sole inhabitants of car production lines (leading to the car
window sticker which claims ‘Designed by a computer, built by a robot,
and driven by an idiot’). In fact, most of these industrial robots are really of
minimal intelligence as they simply follow a pre-defined pathway without
making very much in the way of actual decisions. Even the impressive
paint-spraying robot which faithfully follows the pattern it learns when a
human operator manually moves its arm cannot learn to deal with a new
object without further human intervention.

On the other hand, the coming generation of robots have more-
sophisticated sensors and software, which allow them to determine the
shape, colour, and texture of objects, and to make more rational decisions.
Anyone who has seen reports of the legendary ‘Micromouse’ contests,
where definitely non-furry electric vermin scurry independently and
purposefully (?) to the centre of a maze, will not beaMAZEd by our faithin
the future of theintelligent robot, although there seems little point in giving
it two arms and two legs.

Another important area where Artificial Intelligence is currently being
exploited is in the field of expert systems, many of which can do as well (or
even better) than human experts, especially if you are thinking about
weather forecasting. These systems can be experts on any number of things
but, in particular, they are of increasingimportance in medical diagnosis
and treatment — although the medical profession doesn’t have to worry
too much as there will always be a place for them since ‘computers can’t
cuddle’

A major barrier to the wider use of computers is the ignorance and pig-
headedness of the users, who will only read the instructions as a last resort,
and who expect the machine to be able to understand all their little
pecularities. Processing of ‘natural language’ is therefore a major growth
area and the ‘fifth generation' of computers will be much more user-
friendly.

Ariificial Intelligence on the Dragon

Most of the serious work on Artificial Intelligence uses more suitable
(but exotic) languages than BASIC, such as LISP and PROLOG, which
are pretty unintelligible to the average user and are probably not available
for your home micro in any case. The BASICroutines which follow cannot
therefore be expected to give you the key to world domination, although
they should give you a reasonable appreciation of the possibilities and
problems which Artificial Intelligence brings.

CHAPTER 2
Just Following Orders

As your computer is actuallytotally unintelligent, you can only converse
with it in very simple terms. The first step, used in many simple adventure
games, is to have a series of preset orders to which there are fixed responses.
Let’s start by taking a look at giving compass directions for which way to
move. At first sight, the simplest way to program this appearsto be to ask
for an INPUT from the user and to write a separate IF~-THEN line foreach
possibility (see Flowchart 2.1).

I FRINT"DIRECTIOMT";

126 INPUT IM%

200 IF IM%="HOPTH" THEM PRIMT "M
DRTH"

2168 1F [M$%="S0UTH" THEH FRPIMT "3
OLITH"

3;‘;1 IF IH%="WEST" THEHW PPIMT "LE
.’?‘%t IF IH%-"EFST" THEM PRIMT "EA
g "

259 GOTO 169
INPUT

Flowchart 21 Giving Compass Directions

Artilicial Inielligence en the Dragon

If you type in anything other than the four key command words, nothing
will be printed except for another input request. It would be more user-
friendly if the computer indicated more clearly that this command was not
valid. You could do that by including a test which shows that none of the
command words has been found, but this becomesvery long-winded, and
effectively impossible when you have alonglist of valid words.

240 F IMT<3"MORTH" AND IHS:
UTH" AND INSCX"WEST" AND IMGL:"E
AST" THEM PRIMT"INYALID REGUEST"

On the other hand, adding GOTO 100 to the end of each IF-THEN line will
force a direct jump back to the INPUT when a valid command is detected.
If all the IF tests are not true then the program falls through to line 240
which prints a warning. Making direct jumps back when a valid word is
found isa good idea anyway, as it saves the system making unnecessary tests
when the answer has already been found (see Flowchart 2.2).

Flowchart 2.2 Deleting Unnecessary Tests

205 IF IHE="HORTH" THEM PRIMT- "M
OPTH" 3070 194

Chapter 2 Just Following Orders

21@ IF IN%="SOLITH" THEM PRINT "S
OUTH" : SOTH 168

220 IF IH$="WEST" THEM PRIMT "WE
§T":GOTO 1609

230 IF IM%="ERST" THEM PRINT “EA
ST":GOTO 16A

248 PPINT"IMVALID REMUEST"

That will echo the command given on the screen but of courseitdoes not
actually DO anything. Asa model to work with, we willstartat a position
defined as X=0 and Y=0 and indicate movements as plus and minus in
relation to this point. Notice that integer variables are used wherever
possible, as they are processed faster than real numbers, and this also
removes the possibility of clashing with reserved variables.

18 ¥=@:y=B

We now need to add the real response to the command, as well as the
message indicating that it has been understood (see Flowchart 2.3).

20A IF IN%="HORTH" THEW PRIMT "H

NRTH" Y=Y-1:00T0 100

211 IF IM&="SOUTH" THEMN PRINT "5

MLTH" :¥'=Y+1:GOTO 100

220 IF INS="WEST" THEN PRINT “HE
ST":¥=¥~1:GOTO 10A

’33 IF IN®="EAST" THEM PRIHT "EA
ST ¥=¥r+1 GOTO 1664

That modification actually shows your position appropriately, relative to
the origin. So that you can see what is happening, and where you are, add a
printout of your current position:

116 PRINT S0 3, iy sy

Using subroutines

Of course, that was a very simple example and, particularly where the
results of your actions are more complicated, it is usually betterto put the
responses into subroutines.

200 IF IH%="NORTH" THEM GOZLE 20
AR : GOTD 109

Artificial Inteliigence on the Dragon

219 1F INS="SOUTH" THEN GOSLIEB 21
7AA:GOTO 196

220 IF IN#="WEST" THEN GOSUB 229
A:GOT0 109

237 IF INE="EAST" THEN GOZUB 2309
A:G0TO 199

’BBB PRINT "GOIMG NORTH":%=‘Y-]:R
ETLIPN

2187 PRINT "GOIMG SOUTH":Y=Y+1:R
ETLRH
2263 PRIMNT "GOING WEST":¥=X~1:RE
TIJRN
2308 PRINT "GOIMG EAST" :X=X+1:RE

TLIRH
X AaNDY

PRINT

NO
o PRINT |
INVALID

Flowchart 2.3 Adding a Response

Chapter 2 Just Following Orders

More versatility

You could extend this use of IF THEN tests ad infinitum (or rather ad
memoriam finitum!), but it is really a rather crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DATA and then store them in string arrays.
First you must DIMension arrays of suitable length for command words
(C$) and responses (R$). As variable-length strings are allowed (up to 255
characters) the actual text can be of almost any length.

30 DIM C® 3),REC2D

If you put the commands and responses in pairs in the DATA statement,
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.1).

19888 DATA NORTH, GOING NORTH. SO
TH. GDING SOUTH, MEST . GOIME WEST.E
AST . GOIHG ERST
11890 FOP H=n T0
11918 PERAD CH M),
11920 MEMT M

®ONT

ELEMENT COMMAND RESPONSE
NUMBER WORD C$(n) R$(n)
1 NORTH GOING NORTH
2 SOUTH GOING SOUTH
3 WEST GOING WEST
4 EAST GOING EAST

Table 2.1 Content of Command and Response Arrays

To initialise the arrays (fill them with your words), when you RUN add a
GOSUB and RETURN.

4% GOSUE 109A0g
11828 PETIIPH

Ariificial Intelligence on the Dragon

All those IF-THEN tests can now be replaced by a single loop which
compares your INPUT with each element of the array containing the
command words (C8$) in turn (see Flowchart 2.4). Lines 200-220 need to be
replaced by the following lines but notice also that line 230 must be deleted.

200 FOR H=n TN 3

210 1F THN%=CE(M) THEM PRINT R®(M
»:GOTO 179

220 HEXT M

Flowchart 2.4 More Versatility

Now, IF your input, IN$, corresponds to any of the command words, the
program jumps out of the loop after printing the appropriate response,
R3(N).

Of course we are now back in our original position of actually doing
nothing, so we need to be able to call those action subroutines. First of all

10

Chapter 2 Just Following Orders

let’s arrange to jump out of the loop, if amatch is found, toanew routine at
line 300.

210 IF IN%=C®/NY THEM PRINT R%‘H
»:GOTD 209

Westillhave a pointer toindicate whichword matched theinput, as N (the
number of array elements checked) holds this value. We can use thisin an
ON-GOSUB lineto move toappropriate routines which are similar to the
ones we wrote earlier, except that there is no need todefinethe particular
message: this has already been printed as R$(N).

290 OH CH+1)> GOSUR 20090.210R.2720
7. 2390: GOTO 1A

2R Y=y-1:-PETUPN

2100 Y=Y+1:RPETURN

2209 M¥=X-1:RETIIPN

2200 ¥=M+1:RETURN

Expanding the vocabulary

The arrays can easily be expanded to contain more words. It would be
better if we defined the number of words as a variable WD, which we
would then use to DIMension the arrays and for both the filling and
scanning loops. This produces a general routine which is easily modified.

2?0 WD=z

39 DIM CB LD Y, RBCLC D
260 FOR Ne=Q TO LI
11999 FOP N=8 TOD WD

For example we can add intermediate compass directions which change
both X and Y axes.

27 Wh=7

18010 DATA MHORTH EAST.GOING NORT
H ERST,SOUTH EAST,GOING SOUTH EA
ST.S0UTH WEST, GOING SOUTH WEST.N
ORTH WEST.GOING NORTH WEST

and add some more subroutines:

708 QM (N+1)> GOSUB 2000.218R.220
7,239, 2409,2390,26AR . 270%:GOTO 190

Ariificial Intelligence on the Dragon

2488 Y=Y~1:¥=X+1 ' RETURN
2500 Y=Y+1:X=¥+1:RETLIRN
260Q YeY4+1:¥=X~1:RETURN
2790 ‘Ya'~1:Ke¥~1:RETURN

Removing redundancy

All the responses so far haveincludedthe word ‘GOING" and this word has
actually been typed into each DATA statement. Now typing practice is
very good for the soul but it would be much more sensible to define this
common word as a stringvariable. Noticethat aspaceis included at the end
to space it from the following word.

19199 GE="GOING "

You can then delete all occurrences of this word inthe DATA and combine
G$ with each key word in the response instead.

210 1F IH&=C®.H> THEN PRINT G%:R
S N>:GOTO 399

1999A@ DATA NORTH, NORTH, SOUTH, 80U
TH, WEST, WEST, EAST. EAST

19318 DATA NORTH ERST,NORTH ERST
»SOUTH ERST, 80UTH ERST, SOUTH WES
T,SOUTH KWEST.NORTH WEST,NORTH WE
ST

Now that is starting to look rather silly as both arrays now contain exactly
the same words, so why not get rid of the response array, RS, and simply
print C$(N)? Well, in this case you could do that without any problem, but
of course where the responses are not simply a repetition of the input (as is
very often the case) the second array is essential.

If you look hard at all those subroutines you will realise that they all do
only one thing — update the values of X and Y. Now we could include
that information in the original DATA and get rid of them altogether! We
need toadd two more arrays to hold the X and Y coordinates, add the
appropriate values into the DATA lines aftereachresponse,and READ in
this information in blocks of four (INPUT, RESPONSE, X-MOVE,
Y-MOVE—see Table 2.2).

30 DIM CECWD », RKOWD b, XOWD), YWD >
1999@ DATA NORTH.NORTH.d,~1,S0UT
H, 8OUTH, @, 1, WEST, WEST. -1, @, ERST
ERST, 1.9

12

Chapter 2 Just Following Orders

19710 DATA NORTH EAST,NORTH ERST
,1,~1,80UTH ERST,SOUTH ERST.1,1,
SOUTH WEST,SOUTH WEST,-1,1,NORTH
WEST,NORTH WEST.-1,-1

11816 PEAD CECH>,RECNI,UONDI,YCMD

ELEMENT COMMAND RESPONSE

NUMBER WORD R&(n) X-MOVE Y-MOVE
C$(n) X(n) Y(n)
1 NORTH NORTH 0 =1
2 SOUTH SOUTH 0 1
3 WEST WEST =1 0
4 EAST EAST 1 0
5 NORTH-EAST NORTH-EAST 1 -1
6 SOUTH-EAST SOUTH-EAST 1 1
7 SOUTH-WEST SOUTH-WEST =1 1
8 NORTH-WEST NORTH-WEST -1 =1

Table 2.2 X and Y Moves Incorporated into Arrays

Now we can delete lines 300 to 2700 and modify line 210 so that X and Y
are updated here (see Flowchart 2.5).

219 IF INF=CS(N> THEN PRINT G%.R
TN M=l N3 Y=Y4Y(NDY:GOTO 199

This overall pattern of putting all the information into a series of linked
arrays is a very common feature which is used in several of the later
programs in this book.

Artificial Intelligence on the Dragon

INPUT
DIRECTION

PRINT 1% = Y=
MATCHING MATCHING MATLHING
RESPONSE. x b
ELEMENT ELEMENT LEMENT

Flowchart 2.5 Using Linked Arrays

Abbreviated commands

So far we havealways used complete words as commands, but that means
that you have to do a lot of typing to give the machine yourinstructions. [f
you are feeling lazy youmight think of changing the command words to the
first letter of the words only, and then INPUT a single letter. However,
unless you start using random letters that will only work as long as no two
words start with the same letter! To code all the eight compass directions
used above, we will have to use up to two letters: N, NE, E, SE, S, SW, W,
NWw.

12A@9 DATA N,MORTH.R,~1,8.SO0UTH,
2,1,W,WEST,-1,0,E,EAST,. 1,0

18018 DATA NE,NORTH EASTY,1,-1,SE
»80UTH EAST,1,1,SW,SOUTH WEST,~1
, 1, NW, HORTH WES8T, -1,~1

i4

Chapter 2 Just Fellowing Orders

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching

Inallthe programsabove we have always checked that theinputmatched a
word in the command array exacily. However, it would be useful if we
could allow a number of similar words to be acceptable as meaning the
same thing. For example, you could check whether the first letter of the
input word matched the abbreviated keyword by only comparing the first
character (taking LEFTS$(INS,1)).

199 INW=LEFT&(IN®, 15

That will work with NORTH. SOUTH. EAST and WEST. but there are

obvious problems in dealing with the intermediate positions. In addition

there are lots of words beginning with the letters N, S, E and W — all of

which would be equally acceptable to the machine as a valid direction.
For example:

NOT NORTH
would produce:
GOING NORTH

A more selective processistomatch a number of letters instead o fjust one.
In this example the first three letters of the four main directions are quite
characteristic.

NOR
SOou
EAS
WES

If you use these as command words. then, for example:
NOR
NORTH
NORTHERN

and NORTHERLY

will all be equally acceptable, but:

Ariificial Intelhigence on the Dragon

NOT

NEARLY

NOWHERE
and NONSENSE

will all be rejected.

All we need to do is to take the first three letters of the input,
LEFT$(IN$.3), and compare them with a revised DATA list. Line 10010
can bedeleted and the word number variable WD must then be amended
tod.

29 Lib=3

190 IN%=LEFTS$CIN%,3)

19887 DATA NOR.MORTH.A, -1, SOU, SO
U;’H‘ A,1.WES,WEST,-1,8,EAS.EAST, 1

Sequential commands

In the routines above we have dealt with the intermediate compass
positions as separateentities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get toany point, and if more than onecommand word could be
understood at the same time we would not have to worry about checking
for directions such as ‘NORTH EAST" as they could be dealt with by the
combination of ‘NORTH' and ‘EAST".

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up aseparate word. The answer, of course, isthat yousee a
SPACE between them. Now if we look for spaces we can break the input
into separate words which we can look at individually. The easiest way to
look forspacesis withthe INSTR commandwhichsearchesthe whole ofa
designated search string for a match with a second target string.

For example, line 130 will check whether the first character in IN$ is a
space. If it is not a space then it will automatically continue checking until
the end of INS$ is reached. If no space is found in the whole of IN$ then SP
will be zero. If a space is found then the value of SP will be the number of
characters along IN$ that the space is located (see Flowchart 2.6).

139 SP=INSTR{ 1, IM%. " ")
148 PRINT 8P:GOTO 190

16

Chapter 2 Just Following Orders

MOVE TO
NEXT

Flowchart 2.6 Locating the Position of a Space

Try this out with:
NOR WES
SP 4
NORTH WEST
SP 6
NOR NOR WEST
SP 4

Notice that the length of the word is accounted for by SP but that only the
first space is found. To find all the spaces we are going to have to work
harder. First delete that temporary line 140.

Let's look at the input logically from the start (lefthand side). We will
replace the LEFTS$(IN$,3) with MID$(IN$,ST,3) so that we can look at
any three-letter combination in the whole of IN$. To make it more sensible
we will call the result of this W$ as it shows the position ofa word. Tostart
with we must set the search start position ST equal to one and add a space
to the front of INS$ so that the first word is also found (see Flowchart 2.7).

125 ST=l:IN%=" "+INS

130 SP=INSTR{ST, IN®." ")

190 LI§=MEID%? INE,ST.3)

218 IF LIS=CH(N) THEM PRINT G9;R%
CND:X=M4KOND Y=Y4YC N):GOTO 180

Ariificial Intelligence orn the Dragon

If you run this as it stands then you will still only find the first word as we
have GOTO 100 on the end of line 210. However simply sending the
program back to the INSTR check in line 130 instead does not help either,
as it will always start checking from the beginning of IN$ and will always
find the same first space. Once we have found this first space we need to

Flowchart 2.7 Searching for a Keyword

move the start position ST for the next search on to the character after
that space, SP+1. When no more spaces can be found then the end of the
input has been reached and we can GOTO 100 again.

149 IF SP>@ THEN ST=8P+1:GOTO 19

a

1@ GOTO 199

219 IF We=CE(NY THEN PRINT G®;RS%
CND:M=X4XCN)-Y2Y4YIN):GOTO 130

Now typing

NORTH WEST

produces:

GOING NORTH

18

Chapter 2 Just Following Orders

GOING WEST
and even:

NOR NOR EAST
is decoded as:

GOING NORTH
GOING NORTH
GOING EAST

It would be alot neater if we deleted allthoseredundant ‘GOINGs’ and put
all the reported directions on the same line. We need to PRINT G$ once,
immediately before the INSTR check. Now each time we go through the
loop comparing the current word with those stored, we PRINT R$(N); if
there isa match. As there is a semi-colonafter this, the words will be printed
on the same line but we also need to add spaces between them. Finally we
add a simple PRINT just before we go back for a new input, to move the
cursor position on to the next line.

126 FRINT G#$3

1435 INT

210 IF Ws=Cs (N) THEN FRINT R$(N)
3" a s X=XAX (D) s Y=74Y (N) s GUTO 17

Now:
NORTH EASTERLY SOUTH WEST
sends you neatly round in circles:

GOING NORTH EAST SOUTH WEST

CHAPTER 3
Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way, as it has only been programmed to understand a very few words or
letters and it only recognises these if they are entered in exactly the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing whether
the two strings match exactly.

On the other hand in the real world everyone uses what is known as
‘natural’ language which is a very sophisticated and extremely variable
thing which only the human brain can cope with effectively. Even if we
forget for the moment the difference between ‘English’ and ‘American’ or
even regional dialects of either (can ‘Ow bist old but’ really mean ‘How are
you old friend’?) dealing with language has an infinite number of problems.

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIA developed a superb translation program which could instantly convert
English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities, in which it
converted everything he said into Russian, spoke that, and then retranslated
the Russian back into English. He was most impressed and was totally ab-
sorbed until one of his aides reminded him that he had forgotten that the First
Lady was waiting for him outside. When he ruefully commented ‘out of
sight, out of mind’ he was amazed to hear the machine come back with
‘invisible maniac’

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However if we are going to be able to
deal with sentences, we are going to have to think a lot harder than that.
The Oxford Dictionary definition includes ‘a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement, question, command or request’ but also concedes
that it is used loosely to mean ‘part of writing or speech between two full
stops’. Phew! Can somebody translate that into everyday English, please?

21

Artificial Intelligence on the Dragon

The intricacies and illogicalities of the English language are infamous so
how can we expect a computer to cope?
Well, let’s start by looking at some simple examples of sentences.

I WANT.

consists of a subject I and a verb WANT

I WANT BISCUITS.

also has an object BISCUITS

I WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATE
1 SOMETIMES WANT CHOCOLATE BISCUITS.

qualifies the verb with an adverb SOMETIMES.

The most important word in all the above examples was*‘WANT’ as it
conveyed the main idea. The second example was more informative as it
indicated that only one particular type of object, BISCUITS, was wanted.
The addition of anadjective, CHOCOLATE, gave further information on
the type of object wanted, but life became more uncertain again when the
adverb SOMETIMES was included.

Now how could a computer program decode such sentences? The answer
must be to find some logical structure in the sentence, so what ‘rules’ could
we lay down for this example?

1) All started with a subject I and ended with a full stop.

2) The last word was always the object BISCUITS (unless there was no
object and only two words).

3) If the word before the object was not the verb WANT it was an ad jective
CHOCOLATE.

4) If the word before the verb was not the subject I it was an adverb
SOMETIMES.

Let's write a program in which we give the computer sentences andask it to
break them up into their component parts.

To start off, we need to give it a vocabulary of objects, adjectives and
adverbs to work with. We will READ thesefromDATA andstorethemin
arrays OB, AJ and AV, according to type.

22

Chapter 3 Undersianding Natural Language

18 GODSUB 1996:

19808 LIM OPR(IH, AJECS . AVE 2
19999 PEM OPJECTS

118AQ DATA BISCUITS.BUNS. CAKE
11%10 DATA COFFEE. TEAR, WATER
11219 PEM ACJECTIVES

11820 LATA CHOCOLATE, GINGER, JAM
11826 DATA COLD, HOT, LUKEWARM
11933 PEM ADVERBS

11940 DATA ALWAYS, OF TEN. SOMETIME ;

1108 FORP H=0 TO 5
1110 PERD OB%CH:

1120 NEXT N

1120 FOR N=0 TO S
1140 PERD A.JR(M:

1150 NEXT M

11808 FOP-N=@8 TO 2
11780 RERl» AYSCND

1188 NEXT N

1198 PETUPH

T)

Now we need to breakthe sentence intowords (see Flowchart 3.1). Once
again we will do that with an INSTR search for spaces, and to make life
easier we will add a space onto the end of IN$ so that the format of the last
word looks just like that of other words.

188 INPUT IH%

120 IH®sIN%+" "

138 SP=INSTR{ST, IN%," ")
199 GOTO 136

The end of the sentence has been reached when no more spaces can be
found.

148 IF SP=@ THEN 200
If a space is found then the section of IN$ from ST (current search start)
to SP—ST (current space—current start=length of word) is cut out and

stored in a word store array W$(WC).

150 W$ (WC)=MID$(IN$,ST,5F-ST)
10010 DIM W <4)

T o begin with ST=I so that the search starts at the first character in the

23

Artificial Inielligence on the Dragon

MOVE TO
NEXT
CHARACTER

COUNT
(we=wc+1)

Flowchart 3.1 Cutting Out Words

input string. The word count variable WC is set to zero so that the first
word found is stored in the zero element of the word store array.

118 ST=1:LC=A

The word countisincremented(sothat the next element ofthearray W$ is
used nexttime) and a check made that thereare not more than five words in
the sentence. The start position for the next search is then set to one more
than the position of the last space and the search is continued.

150 WC=WC+1

176 IF WC»T THEM PRIMT "“SEMTEMCE
TOO LOMG" :GOTO 168

183 ST=SP+{

24

Chapter 3 Undersianding Natural Language

A test is now made tosee whether there is a match between the key words in
the sentenceand the objectsin the vocabulary array O B§(N) (see Flowchart
3.2). Only words 2, 3 and 4 are checked as these are the only possible

Flowchart 3.2 l.ooking for a Match

positions for the object in our restricted sentence format. Three different
routines are jumped to according to the position of the matching word in
the sentence. If no match is found a message is printed and a new input
requested.

FOR N=A TO S

IF W 2>=0B${N> THEN Sum
IF W< 3)s0OBBCNY THEN 60A
IF W%C4)=0B%E M) THEM 7H0
HEXT N

PRINT "QB.JECT NOT FOUND"
GOTO 106

If the object was found as word 3 then there was neither adjective nor
adverb.

25

Artificial Inieligence en the Dragon

507 PRINT "MO ADJECTIVE OR ADVER
Bll
510 GOTO 189

If the object was found as word 4 then there could have been either an
adjective or an adverb in the sentence (see Flowchart 3.3).

€89 PRINT “"EITHER ADJECTIVE OR A
LYERB!

Flowchart 3.3 Adverb or Adjective

First we check for a match between the second word and the contents of the
adverb array.

61 FOR N=¢ TO 2

620 IF WSC1>=AYRCN3 THEN 999
6320 NEXT N

If no match is found then we check the third word against the adjective list

THEN 1000

660 NEXT
If a match is not found in either of these lists, then it would be useful to

26

Chapter 3 Understanding Naiural Language

indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb “WANT", as in that case the
second word must have been an adverb. On the other hand, if the second
word was the verb then the third word must have been an adjective. Notice
that the actual word which did not match is now included in the message.

€70 IF WBC 13 >"WANT" THEN PRINT
"ADVERE " iW® 1);" NDT UNDERSTOOD
" ELSE FRINT "MD.JECTIVE ":W®(23;
" NOT IJNDEPSTOIOD"

€93 GOTO 100

If a match is found in either test then a success message is printed. Note that
these possibilities are exclusive and thatin four words we can only have one
or the other.

309 PRINT "RDVERE"

919 GOTO 199

1998 PRINT "ADJECTIVE"
1219 GOTO 199

Where both adverb and adjective are present we must check for both, and
therefore a match in the first test also jumps on to the second test (see
Flowchart 34).

789 PRINMT "ADVERE AND AD.JECTIVE"
719 FORP N=B TO 2

720 IF L% 13>=AVEC(N) THEN 750
730 NEXT N

1f no match is found for the adverb, then this fact is reported: a flag AV is
set to | to indicate failure at this point before the adjective is checked.

740 PRINT "ADVEPE ":WBC(1>;" NOT
IJNDERSTOOC" : AY=1

758 FOR N=@ TO 5

760 IF W% 3)=AJS(N> THEN 209
770 NE¥T N

If a successful match for the adjective is not found then the program loops
back after a report.

799 PPIMT "ADJECTIVE "MW 23" H
0T UNDERSTOOC"

749 S0TQ 1A9

27

Artificial Intelligence on the Dragon

RESET
FLAG
(AV=g)

Flowchart 3.4 Adverb and Adjective

If the adjective was found then a test is made that the adverb {lag AV was
not set before a match is reported. In any case, the flag is reset before the
next input.

299 IF AV=0 THEM PRIMT “ALECTIY
E AMD ADVEPE OF"

216 Av=@

824 GOTY 1A

What about punctuation?

As we have already said, you usually recognise the end of a sentence
because it has a full stop, although when you type into a computer you
usually forget all about such trivialities. But what will happen in the

28

Chapier 3 Undersianding Natural 1.anguage

program so far if some ‘clever’ user puts in the correct punctuation? If you
think for a moment, you will realise that the computer will start
complaining as it will no longer recognise the last word, as this will actually
be read as the word p/us the full stop.

We therefore need to check if the lastcharacter inthe input string IN§ isa
full stop: thisis simple asthe ASCII code for this character is 46. The best
place to check seems to be immediately after the INPUT. Ifthe code of the
last character is 46, then simply throw this character away and then
continue as before.

TAKE ASCIl

VALUE. 0F
LAST

CHARACTER

Flowchart 3.5 Dealing with Punctuation

We will add this as a subroutine which is jumped to as soon asan input is
made. Other punctuation marks may also appear at the end of the sentence,
so we will read the last character as a variable LC which we will also use
later. This is stored as a simple variable by taking the ASCII code of the last
character in IN$: using simple variables saves a lot of typing of string (§)
indicators (see Flowchart 3.5).

145 GOSUB 2087

2000 LC=ASC(RIGHTSL ING, 1))

2010 IF LC=46 THEN 21494

390 PETURN

2109 INB=LEFTH(IN%., LENC IMR —~1 2R
ETURH

29

Ariificial Intelligence on the Dragon

More useful sentence terminators are the question and exclamation marks
which oftenindicate the contextof the words. We candistinguish these in
the same way by their ASCII codes and, forthe moment, we will just report
their presence.

2920 1F LC=33 THEW PRIMT"EXCLAMA
TION!'":GOTO 2109

2029 IF LC=E3 THEM PRINT"OUESTIO
N":GOTD 2199

The normal INPUT command will not accept anything after a comma,
which it reads as data terminator. However, LINE INPUT will accept any
text including commas.

199 LIME IMPUT IHNS

Commas may be useful in indicating different parts of a sentence, which
could be examined as ‘sub-sentences’ in their ownright. However. in simple
cases they are best deleted and replaced by spaces before the sentence is
broken into words (see Flowchart 3.6). Note that this will only function
totally correctly if there is no space after the comma, as any space following
a replaced comma will be seen as a new word.

Flowchart 3,6 ing Commas and Apostrop

115 GOSLB 39AA

2008 CMEINSTREST, INT, ;
3019 IF CM=B8 THEW ST=1:RETURMN
2D IMS=LEFTECING.CM-12+" "4+RIG
HTEC TH%, LEHC IN®)-CHM)

2330 ST=CM+1

3949 GOTO 2088

ny

30

Chapter 3 Understanding Nawral Language

If you add this line, you can see the punctuation being taken out of the
string item.

3925 PRIMT IN%

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

115 GOSUR Z000: GOSUE 2100

100 AP=INSTR (ST, IN$, "*")

1o IF =0 THEN ST=1:RETURN
2120 IN$=LEFT$ (IN$, AF—-1) +RIGHT$ (
IN$,LEN(IN%)—AF)

125 PRINT IN$

T120 ST=AF-+1

3140 GOTO 3100

A sliding search approach

Although the method of examining a sentence described above will work, it
has the disadvantage that it requires the sentence to be entered in a
particular, restricted format. For example, if you enter:

I WANT HOT CAKES OFTEN
the computer will report:
OBJECT NOT FOUND

as it mistakenly takes the last word OF TEN as the object.

On the other hand using a sliding search of the whole sentence for each
key word, without first breaking the sentence down into words, has the
advantage that it allows a completely free input format. In this approach
we take the first key word and try to match it against the same number of
letters in INS, starting at the first character. If this test fails then it is
automatically repeated, starting from the second character, etc, until a
match is found or the end of INS is reached. For example, if IN$ was ‘I
WANT CAKE’ and the first key word was‘C AKE" the comparisons would
be:

Pass | 1WA
Pass 2 WAN
Pass 3 WANT

31

Aruficial Inelligence on the Dragon

Pass 4 ANT

Pass 5 NT C

Pass 6 T CA

Pass 7 CAK

Pass 8 CAKE (match found)

Delete lines 105- 1010 and add this line to check for the first object OB$(0).

218 SP=INSTR(1, IN®,OBSCNY: IF SP
S@ THEN PRINT OBGCNY; " *;

Each object can be compared in the same way by forminga loop. (Note that
printing a semi-colon after OB$(M) ensures that each word is printed on
the same line.)

200 FOR N=@ 70 5
228 MEXT N

Similar checks can be made for matching with words in the adverb and
adjective arrays.

O FOR N=0 TO 2

210 SF=INSTR (1, IN$,AVE(N)): IF SF
00 THEN FIRINT AVS (N) 3"

NEXT N

400 FOR N=O TO 5

410 SF=INSTR(1,IN$,AJ$(N)):IF SF
=0 THEN FRINT AJ$ (N)3 "

420 NEXT N

1000 GOTO 100

To report what has been found, and so that we can use the words
discovered later, we will store each inan array as it is detected. We already
have a word store array W$ but we will expand it to hold up to 20
words (which should be enough for even a very verbose sentence!).

10010 DIM W$<19)

If a match is found a temporary string T $is set equal to the matched word,
and asubroutine called atline I500, which puts the worddetected inthefirst
array element (see Flowchart3.7).

210 SP=INSTRC1, INE.OBRCHY»: IF 5P
A THEM PRIMT OB®CN);" : T$=0B%

32

Chapter 3 Understanding Natural Language

N>:GOSUB 1599
1508 WHIWC)=TE

PRINT
MATCHING
ADVERB

Flowchart 3.7 Sliding Search

The word count WC is then incremented, so that the next word is put in
the next element. before returning

1520 LIC=WC+1
1330 RETURN

Using a temporary string T$ in the actual subroutine means that we can
also use it in the tests for adverbs and adjectives in exactly the same way.

210 SE=INSTR (1, IN$,AVS(N)): [F SF
=0 THEN FRINT AV$S(N) 3" "i:T4=AVs
(N) 3 GOSUIEB 1500
410 SF=INGTR(1, IN$ AJH(N))2 IF SF
=0 THEN FRINT AJ$(N)&" "3:Te=AJ$
(N) : BOSUR 1900

Partial matching

One advantage of the sliding search is that you can easily arrange to
recognise a series of connected words by only looking for some key
characters. This is obviously useful as it saves you having to put in both
single and plural nouns such as BISCUIT and BISCUITS. If you amend
the DATA in line 11000 as shown below than both will be recognised.

11990 DRTA BISCUIT.EUM. CAKE

Ariificial Intelligence on the Dragon

However life is not that simple as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN,
BUNS, and BUNFIGHT but unfortunately BUNCH, BUNDLE,
BUNGALOW, BUNGLE, BUNK, BUNION, and BUNNY as well

Flowchart 3.8 Checking That This is the Start of a Word

This problem is not restricted to prefixes as the computer will
also not distinguish between HOT and SHOT. You could include a
check that the character before the start of each match was a space
(ie that this was the start of a word, see Flowchart 3.8). SP gives
the current start-of word position so MIDS$(IN$,SP11) is the
character before this.

2183 SP=IMSTR L, IN%. OESC M IF SP

3 THEHW IF MID®CIMG.SP-1,1 =" "

THEH PRIMT OBSCM % " " Th=0BSCH >
(GOSUB 2006

3G EP=IMSTR 1, IM%. AYECH 3 IF SP
0 THEW IF MIC$C THS. &P-1,1 =" "

THEM PRIMT RWECH " i TH=RYSE(MN
:GOSUE 20008

413 SP=INSTR: 1., IM®, ALIECNY: IF CP
»@ THEM IF MID®C IN% A=t
THEM PRINT AJEC M "
(GOSLIE 2086

For this to function correctly on thefirst word.justadd a spaceto the start
of INS.

110 IM$=" "+IH%

Inasimilar way. you could use checks on the next letter after the match, or
the length of the word. to restrict recognised words.

Putting things in order
Although we have now detected all the words in the sentence. regardless of

34

Chapter 3 Understanding Natural Language

their position or what else is present, they are found and stored in the order
in which they appear in the DATA. This is because the comparison starts
with the first item in the object array rather than the first word in the
sentence. It would be useful if we could rearrange the word store array so
thatthe wordsin it were inthe orderin which they appeared in the sentence.

To do this, we must keep a record of the sentence position of the word
SP and word count WC, as each word is matched in a new word position
array WP. This is a two-dimensional array with the sentence position kept
in the first element, WP(WC,0), and the word count, WP(WC,I), in
the second.

10228 DIM WP 19,1
1518 WP, B3=SP: WP WC, 1 3=WC

The actual sorting subroutine which doesthe rearrangement is at line 4000.
This must only be reached if a match is found.

440 IF WC=8 THEM 470

450 GOSUB 4080

460 GOTO 198

470 PRINT"NG MATCH FOUND
430 GOTO 109

The sort routine (see Flowchart 3.9) takes the sentence position of the first
word found (first element in the first dimension WP(0,0)) and compares it
with the sentence position of t he second wordfound(second element in the
firstdimension WP(0+1.0)). If the position variable for the first word is of

Flowchart 3.9 Putting Words in Order

higher value than that for the second word then the first word found is
farther along the sentence than the second word, and these therefore need
to be swapped around. This will put the sentence-position pointers right
but the word-count markers also need to be rearranged to the correct
positions. This process is repeated until the word pointers are all in the
correct order. Notice that the actual contents of the string array which
holds the words are not altered but only the pointers (index) to them.

35

Artificial Intelligence on the Dragon

4000 FOP H=8 TO bC-z

491 IF WPCH, B)7WPYH41.A) THEH N
EXT M GOTO 4840

4820 0=WPCN, @) LIPCH, 0)=WPC(N+1,0
WP N+, 9 =

4020 D=WPC M, 15:WPCHN, 1)=WPCMN+1, 10
WP(H+1.13=0GOTO 49090

If the strings are now printed in revised word-count WC order, they will
be as they were in the original sentence, which should make it easier to
understand them.

4948 PRINT : FOP N=0) TO WC-1
4056 PRINT WSCWPCM, 1h0; " "
40BE0 MHE¥T N:PRINT

All elements in the sentence position array WP(N.0) and the word count
WC must be reset to 0 before the next input.

4978 FOP M=Q TO 19
4380 WP(N, A »=0
4093 NEAT N

4100 WC=8

4113 PETURN

36

CHAPTER 4
Making Reply

More sensible replies
We have considered at lengthhowtodecodesentences whichare typed into
the computer, but the replies it has produced so far have been very limited
and rigid. Although many of the original words in a sentence are of ten used
in a reply, in a real conversation we look at the subject of the sentence and
modify this word according to the context of the reply.

For example the input:

I NEED REST

might expect the confirmatory reply:

YOU NEED REST

and similarly:

YOU NEED REST

should generate:

1 NEED REST

If youlook at that situation logically. you will realise that for each input
subject there is an equivalent output subject. and that we have simply
chopped off the original subjectand added the remainder of the sentence to
the appropriate new subject.

‘I’ is only a single character so we could check LEFT$(INS. I). If this was
‘1" then PRINT "“YOU" could be added to the front of theremainder of the
input, RIGHTS(INS.LEN(INS)-1).

18 INPUT IM®
30 IF LEFT®C INS. 1)="1" THEM PRIH

T "YOU"+RIGHTSC IHT, LEMC IN% D-1)
6@ GOTO 18

37

Artficial Intelhgence on the Dragon

In the same way, the first three characters LEF T$ (IN$,3) could be checked
against ‘'YOU’ and replaced when necessary by ‘I'.

SA IF LEFTSCING, 3 »="Y0OU" THEM PR
INT "I"+RIGHT®C IN®, LENC IN% 3~3)

If you try that out with a series of sentences, you will see that it works OK
until you type something like:

YOU ARE TIRED
which comes back as the rather unintelligent:
1 ARE TIRED

We could get around this by checking for the phrases ‘I AM’and‘YOU
ARE’as wellas']’and ‘YOU ontheir own, but notice that you must test for
these first and add GOTO 10 to the end of lines 20 and 40 to prevent a
match also being found with " and ‘YOU" alone.

26) IF LEFT%C IMG, 45="1 AM"' THEM P

PINT "YOU ARE"+RIGHT®(IMNM®, LENT IM

%3-47:GOTO 1A

40 IF LEFTSCIMNSG, v 2="Y0U ARE" THE

M PRIMT "I AM"+RIGHTHC IMS, LENT IN
$)-72:GOTO 19

Although this method will work, the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into account
the length of the matching word or phrase. Where many words are to be
checked. it is thereforebetter to use a multidimensional stringarray which
can be compared with the input by a loop.

A convenient format is to have a two-dimensional array 10$(n,m) where
the first dimension of each element, 10$(n,0), is the input word or phrase
and the second dimension, 10$(n,I), is the corresponding output word or
phrase. It is easier to avoid errors if these are entered into DATA in
matching pairs and READ inturnintothearray. Start a new program with
these lines which set up the array.

19 GOSUE 1AANKD

1AHAA DIM 10%C3, 1

1129 DATA I,%QU.Y0U.I,1 AM,YOL
ARE. YO HRE,I AM

1200 FOR N=A TO 2

12010 PEAD I0%CH.A). IOMCH, 15
12030 MEXT M

12007 FETURN

38

Chapier 4 Making Repls

PRINT

WORD (N

2ND.
DIMENSION

YES

Flowchart 41 Using a Corresponding Reply

We will use a looping sliding string search again, which for the moment will
just print out the corresponding word or phrase to that matched, [O$(N,I)
(see Flowchart 4.1). One advantage of the sliding string search here is that it
will happily match embedded spaces in phrases as we have not broken IN§
into ‘words’ before matching.

189 LINE INPUT IM%

Z09 FOP N=B TO 3

218 SP=INSTR(C1, IM%., IDS(N, Q) IF
SP>» THEN PRIMT IO%CN.1>

220 NEXT N

254 GOTO 199

It is better to redefine the required response word as a new string which is
the first part of the reply R1$, and then PRINT this when the loop is left.

218 SP=INSTRC1, IN%, IO% N.Q»>-IF
SP»A THEN P1$=I10%{(N, 1)
23@ PRINT RI%

To get a fuller reply, we need to add back on the rest of the original
sentence R2§ (after inserting a space). It is not difficult to define the‘rest of
the sentence’. We just need to subtract the end position of the word from
the LENgth of the sentence and use this value in RIGHTS. SP points to
the start of the matched word: we have arecord of the LENgth of this word
in the first dimension of the array as I0$(N,0), so we just need to subtract
SP+LEN(I0$(N 0)).

SP=THSTRC L. THE. [0
THEM F1g-Xodot. 10

39

Artificial Inielligence on the Dragon

TGHTES THE . LERT THY

FRIMT RIT+R2T

FHUEHS I

=

Flewchart 4.2 A Fuller Reply

Now when you try:

I AM CLEVER

the computer agrees:

YOU ARE CLEVER

Butifyouthenpress RETURN againitstilltells you thatyouare clever —
which is not true, as you have not emptied RI$ and R2$ before looping
back to the next input!

P48 R1G="" pIg=""

Before you feel too clever try:

WE ARE STUPID

40

Chapter 4 Making Reply

which may well surprise you when it gives the reply:
YOU

If you think for a few moments, you will see that one of our keywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT
where the computer disagrees with you by returning:
YOU COMPETENT

Although each keyword is tested forin tum, each one isset to R1$ when a
match is found so only the last match is reported. As the keyword is only
checked for once in each sentence, embedded ‘I’ only causes problems when
this is not the keyword in the sentence.

To get around this we must consider which keywords may cause
problems. Although the letter ‘I' is very common, it is very rarely the last
letter in a word and so we could check that there is a space after the
keyword. We must treat all keywords inthe same way soadd aspacetothe
end of each. This could be done by changing all the DATA but it saves
memory in thelong run if we add the space as thearray is set up. Note that
there is no need to add spaces on to the end of the replies.

17620 I0%CH. @ Y=I0RCH, A" "

We also now need to subtract one less character from INS$ to give R1$, as
the space has now become an integral part of the keyword.

218 SP=INETR. 1, IH%, IOBCN. O3> : IF
SP»R) THEN R1S=I0%(N, 1)1 P2$=" "+F
IGHTSC ING, LENC THE i~ SP+LENC IOSCH
BV

The computer will now readily agree about your incompetence.

If the first keyword is not at the start of the sentence, then everything
before it will be ignored in the reply.

For example the answer to:

WHAT IF I FALL?

will be:

41

Artificial Intelligence on the Dragon
YOU FALL?

Some strange results canstilloccurwhen two true keywords are present.
For example:

WHAT IF YOU AND I FALL

gives

1 AND I FALL

and

WHAT IF I AND YOU FALL

replies

I FALL

However.adding more suitable keywords is easyand some combinations
will just not be acceptable. To make theroutine more general, it is better to

define the number of keywords as a variable KW and use this in place of
the actual number.

16 VW=5:GOSUE 100N

20 FOR MN=0 TO KW

16098 DIM I0%CKW, 12

11213 DATA WE.WE.THEY, THEY
12080 FOP N=:0 TO KK

Now the answer to:
WHAT IF WE FALL?
is the more logical:

WE FALL?

Pointing to replies

So far our computer has displayed only slightly more intelligence than a
parrot. as it has merely regurgitated a slightly modified version of the input.
The next stage, therefore, is to make it take some logical decisions on the

)

Chaprer 4 Making Reply

basis of the input before it replies. First, we need to clear enough string
space (1,000 bytes) and then jump to an initialisation routine.

19 CLERF 1680
28 GOSUE 10829

The numbers of subjects SU, verbs VB and replies RP are defined
as variables so that the program can be easily expanded, and three arrays
using these are set up. (As we have a zero element in the array, these values
are all one less than the number of words.) SU$(n,n) is a two-dimensional
array which is concerned with the subjects in the input and output
sentences. The first dimension (n,0) contains the recognised subject words
and phrases allowed in the input, and the second dimension (n, 1) contains
the opposites which may be needed in the output. VB$(n) holds the legal
verbs, and RP3(n) a series of corresponding replies.

13300 SUs26:VE=6:FP=6
1921n LIM SU%CSL), 1)
19920 DIM VBECVE
1AR2A DIM RPHCRP)

Table 4.1: Pairs of Subjects in SUS(n,n)

SUS$(n,0) SUS(n,1)
I HAVE YOU HAVE
I'VE YOU'VE

1 AM YOU ARE
'™ YOU'RE
YOU HAVE [HAVE
YOU'VE I'VE

YOU ARE 1 AM
YOU'RE '™

You I

SHE HAS SHE HAS
SHE IS SHE IS
SHE'S SHE'S

SHE SHE
THEY'VE THEY'VE
THEY ARE THEY ARE
THEY'RE THEY'RE
THEY THEY

HE HAS HE HAS

43

Artificial Inwelligence on the Dragon

HE IS HE IS
HE'S HE'S

HE HE

WE HAVE WE HAVE
WE'VE WE'VE
WE ARE WE ARE
WE'RE WE'RE
WE WE

1 YOU

The firsttwo lines of DATA contain paired inputand output subjects (see
Table 4.1) and thesearc READ into corresponding dimensioned elements
in the SU$(n.n) array. As the pronouns (T, *YOU'. etc) are frequently
linked to other words to form phrases (such as ‘I'VE’), these combined
forms are also included in the DATA. Notice that these are arranged in
such an order that the most complete phrase containing a keyword is
always found first. A space is added on to the end of each element, so that
some clashing of partial matches is avoided and a space is automatically
formed in the reply.

11mak LATA 1 HAYE . vOU HAYE. T'VE,
YOU'VYE, T AM. YO APE. I'M, vOL' PE. Y
U HAVE. 1 HAYE,*OU" VE. 1*VE, Ol R
PE. T AM,YOU'PE, I'M,¥0U, I

11510 DATA SHE HAS.SZHE HAS.SHE 1
S, EHE 13.5HE’S,.EHE’ S, SHE, SHE, THE
Y’ WE. THEY' VE, THEY APE.THEY ARE.T
HE'Y'FE. THE'Y’ RE, THEY, THEY

11326 DATA HE HAS,HE HAS.HE IS.H
E 1S.HE’S.HE* S, HE, HE, WE HAVE.LE
HAVE. WE’ VE, LIE’ VE. LIE HRE.WE ARE .M
E’RPE WE'PE.WE.WE.T1.%0U

12000 FOP H=3 TO SU

12610 PEAD SUCMN, G, SIJRCH,. 1)
12020 SUSCH, @ =St H, 80+ " SIIECN
s 1 y=SLBCH, 1 o+"

12039 HE¥T H

The next DATA line contains the main verbs which are READ into
VBS$(n). The verb ‘to be’ is omitted as its variations are so complicated.
and many of its versions are already accounted for in the ‘subject’ check.

116260 DATA HATE.LOVE,KILL,DISLIK
E,LIKE,FEEL, KNOW

44

Chapier 4 Making Reply

{2049 FOP M=) TO VB
12A5A PEAD VB%IM>
12668 MEXT M

The last set of DATA contains the replies which are putinto RP$(n), before
control RETURNS to the main part of the program. To make thingssimple
to understand and check at this stage, all the replies contain the original
verb, although of course they could say anything.

1104A DATA PROBRELY HATE YOU RS
WELL,L.OVE YOU TO, KILL ‘YoU,DISLI
FE LOTS OF THIMGE,LIFE CHIPS.FEE
[POWERFLIL, KNCIW EYERYTHING

1207A FOR H=B TO RP

12ASA READ RPPECH)

172090 MEXT N

12607 PETURN

Stripping the input
The inputstring IN$ is searched for question marks, exclamation marks
and apostrophes (CHR$(34)), and these are cut out as before by a
subroutine at line 1000.

1R LIME IMPUT ">»": IH%: [Mdi=TH%+"

119 ST=1:S%=""":GOZUE 10AA

120 ST=1:54="1":GOSLIE 1008

120 ST=1:S8=CHRS(24 3: GOSLE 190
10vie SP=INSTR. ST, INSi, S »

1910 IF SP=6 THEM RETLIPH

1620 INE=LEFTHC IM%. SP~1)4+RIGHTSC
IM%, LEMC THE>-SP)

1837 ST=EP+1

1740 GOTO 1Q60

Matching

The input string is now compared with the list of subjects in the first
dimension of SU$(n,n) (see Flowchart 4.3). If there is no match thena new
input is requested, or else a subject match variable SM is set to the element
number at which a match was found.

45

Artificial Intelligence or1 the Dragon

Flowchart 4.3 Setting Match Pointers

Z00 FOP M=) 7O SU

210 SP=IHSTRC1, INTi, SUBCN. G)

220 IF SP=A THEN NEXT M:GOTO 190
238 SM=N

The verb array is now compared with INS. If no verb is found. then the
input is rejected. or else the verb match variable VM is set.

240 FOP N=B TO VB

250 SP=THSTR(1, IN®, WBHCH))

ZE0 1F SP=0 THEM NEXT H:GOTO 10R
278 'Yr=N

46

Chapier ¢ Making Reply

Making reply

Now that the subject and verb have been identified. we can pick up the
appropriate reply by using VM as a pointer to the reply array RP$(n).
SR RLE=RPB(YM)

In the simplest case we can just add the appropriate subject to the front of
RL$ before we print it.

""79 PLAE=SUEC S 0 +FL0E

nhED PRIMT PLS

nrJB COTO 1606

Now, for example. if you type in:

I HATE COMPUTERS
the program will reply with:

I PROBABLY HATE YOU AS WELL
and:

1 KNOW A LOT
generates:

I KNOW EVERYTHING
Alternative subjects

If youprefer the machinetoagree withyouratherthantryingto beat youat
your own game, then just change the subject added to RLS$ to the second
element of the array (the ‘opposite’).

526 PLE=SUB.SM, 1 +FL$

now

I KNOW A LOT
generates:

YOU KNOW EVERYTHING

47

Ariificial Inelligence on the Dragon

For more variety, you can pick the subject at random from the first or
second element, so that the reply is not predictable.

S10 RPS=PHDE 2 =1
G20 PLE=SLEC SM. RS M+PLS

Putting the subject in context

It would be more sensible altogether if we chose the correct subject
according to the context of the reply, but to do that we must have markers
in the reply array. We will use a slashsign /" to indicate that the word in the
first dimension of the subject array is to be used, and an asterisk **' to
indicate that the word in the second dimension is to be used.

11948 CATA ~FROBAELY HATE YOU AS
WELL . ~LOVE YOu TOD, K ILL YOU. 30
ISLIKE LDTS OF THIHGS, ALTKE CHIP
S$.¥FEEL FOMERFUL . ¥¥HOW EYER'YTHIM
G

We can now search the reply string RP$(VM) pointed to by the verb
marker VM fora slash sign*/". If one is found. then the contents ofthe first
dimension of the subject array SUS(SM.0) are added to the reply RLS. less
the first character (the slash sign. see Flowchart 4.4).

5AB PL4=PPELYM)
510 SP=INSTRPC 1. PL%, "0

G20 IF SPE1 THEW 207

20N PLAESSUSCSM, A+F IGHTS RL%. LEM
(PLED-1)

219 GOTO 524

ADD ON.

IN FIRST
DIMENSION

ADD ON
CUT OFF sgw:ﬁ‘gw
* DIMERBION

Flowchart 4.4 Putting the Subject in Context

48

Chapter 4 Making Reply

On the other hand if no slash sign is found in the reply then a second search
is made for an asterisk **’. If this is found, then the second dimension of
SU$(n,n) is used in the same way.

530 SP=INSTPC1,PLE, 4"
.»43 IF SP>8 THEMW 220
S2R PLE=SIJeC SM, 1 “+PIGHTW RL%,LEM
(PL%>-1)
8398 LOTO 550

Now:

1 LOVE ME

will give:

I LOVE YOU TOO
but:

I FEEL POWERFUL
produces:

YOU FEEL POWERFUL

Inserting into sentences

To make things simple, we have always started our reply sentences with the
subject, butin real life this is not always the case. Now that we have markers
in the replies to indicate whattype of subject is to be added, we can also use
them to indicate where in the reply to insert this word or phrase. Firstwe
willamend the DATA so thatthe word to beinsertedis neverat the start, to
make the insertion process obvious.

110493 DATA DO YOU PERLISE THAT
PROBABLY HATE vOUJ AS WELL MELL -
LOYE ¥OL) TOO, IF ~DOM’T KILL ‘vOU
FIPST,SO WHAT #DISLIKE LOTS OF T
HINGS. 00 <L.IKE CHIPS,bHY 00 $FEE
LPOWERFUL,HOK DO ¥KMOW EVEFYTHIN
[

49

Artificial Inelligence on the Dragon

YES SET TAKE APDoON ADD
POINTER LEFT END - e RIGHT END
MATCH OF REPLY OIMENSION OF REPLY

Flowchart 4.5 Inserting into a Sentence

We actually already have a record of where to insert the word as SP tells us
where in the reply the slash or asterisk was found. All we need to do is to
take the part of the reply before the marker, LEFT$(RLS,SP 1), add the
correct version of SU$(SM,n), and then the rest of the reply
RIGHTS$(RLS,LEN(RLS)—SP).

AN PLE=LEFTSCRPLE, SP—1 +SUSCSM, D
M4RIGHTE(PLS, LENC RL%)-SP 2

'320) PLE=LEFTECPL%, 2P~1)+5U% SM. 1
3+RIGHTSR(PLS, LEMCRLE >-3P >

Now:

I WILL KILL HIM

produces:

IF I DON'T KILL YOU FIRST
and:

I DISLIKE COMPUTERS
gives:

SO WHAT YOU DISLIKE LOTS OF THINGS

50

Chapter 4 Making Reply

Although we are now inserting the subject into the reply sentence more
naturally, we are only dealing with one subject per sentence. Another
minor modification will allow us to insert any number of subjects into a
sentence. All we need to doistokeep repeatingthe search for markers until
no more are found. A start variable ST is defined as I inline 500, and thena
search is made for the first type of marker. When a match is found, ST is
reset to one more than the match position. When RL$ has been modified by
line 800 we now need to jump back to 510 to look for more markers. If no
match is found for the first markerthen ST is reset to 1. Thesecondtypeof
marker is then checked for in the same way.

5PN RL%=PPEYM):ST=1

510 SP=INSTR(ST,RL%." "

528 IF SPx@ THEN ST=:SP+1:GOT0D 29
A:ELSE ST=1

5720 SP=INSTR(ST.PLE. "2")

548 IF SP>A THEN ST=:SP+1 GOTO 22

2]
210 GATO 516
23M GOTOo 527

11949 DATA DO ¥OU REALISE THART
PPOBAELY HATE ¥0OU AS WELL.WELL -~
LOYE YOU TOO, IF ~DON’T KILL *vOU
FIRST,SO WHAT /DISLIKE LOTS OF T
HINGS ESPECIALLY #,00 /LIKE CHIP
S, WHY 0O ¥FEEL POWERFUL .¥THIMK *
FNObi EVERYTHING

Now:

I KNOW EVERYTHING

produces:

YOU THINK YOU KNOW EVERYTHING

and:

1 DISLIKE COMPUTERS

gives:

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

Sl

Artificial Imelligence on the Dragon

OBJECTions on the SUBJECT
Everything is starting to look rosy until you try something like:

I HATE YOU
which replies:
DO YOU REALISE THAT YOU PROBABLY HATE YOU AS WELL

The problem here isthat weare jumping out of thesearch routine assoonas
the first match is found, and thatalthough we are checking for the subject
‘1" we are finding the object ‘YOU’ first. As ‘Y OU’ comes before ‘I” in the
subject array this is found first, in spite of the fact that it comes later in the
sentence.

As we cannot practically mimic all the intricacies ofthe human brain, we
will have to make the assumption that the subject always comes before the
verb, and the object after it. In the program so far we have been checking
for the subject before we checked for the verb, and we will have to reverse
that order. The verb position in the input is the value of SP when a verb is
found, so we will save that as a verb position VP pointer.

207 FOR H=0 TO VB

218 SP=INSTR(1, IN%, VBRI M) D)

226 1F SP=0 THEM NEXT N:GOTO 1974
236 VYM=N:VYP=SP

Now when a match with the subject array is found, we can compare that
position SP with the stored verb pointer VP. and reject the match if the
subject is positioned after the verb (see Flowchart 4.6).

240 FOF N=A TO SL
200 SP=IMSTPC 1, ING, SUBCM. A)

260 TF SP=f THEH NEXT W:GOTO 10A
27 IF SP»WP THEM MEMT M:GOTO 19
(5]

226 SM=H

(If you are too lazy to retype those lines youcan add a couple of jumps to
rearrange theorder instead.)

140 GOTO 240
221 GOT0 580
271 G070 2009
274 YM=N-\P

52

Chapter 4 Making Reply

226 IF SPXYP THEM MEXT H:GOTO 19
2}

Flowchart 4.6 Rejecting Object Matches

A change of tense

1f we change to the past tense of the verb, we may or may not find this. With
the first five verbs the situation is straightforward: to change to the past
tense we just add ‘D’ to the end of the present tense. Both forms are
therefore accepted.

HATE HATED
LOVE LOVED
KILL KILLED
DISLIKE DISLIKED
LIKE LIKED

53

Ariificial Inselligence on the Dragon

However, with the last two verbs the word changes completely, so there can
be no simple match. Although we might get away with checking for ‘KN, as
this is a rare combination, it would not be practical for us to use such a
common group as ‘FE’ as a keyword.

FEEL FELT
KNOW KNEW

It is easier if we treat all verbs in the same way and, if there are no
constraints on memory, then we can simply putallthe possible versions
into the verb array in pairs.

1PEBA SU=25:Ve=12:PP=¢

11A28 DATA HATE.HATED LOYE.LOVED
SHILLKILLLED, DISLIKE, DISLIKED. L
IVE,L.LIFED, FEEL, FELT, KHOW, KFHEL

Untess we want to have different replies for the different tenses, we willnow
have to divide the verb variable VM by two, to point to the correct reply
for both forms.

230 YM=N/2:YP=8F

54

CHAPTER 5
Expert systems

A human expert is someone who knows a greatdealabouta particular
subject and who can give you sensible advice (‘expert opinion’)
on it. Such expertise is only acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they are often not on hand when a problem needs to be solved.

Scientists have thereforeapplied themselves tothe problem of producing
computer programs which mimic the functions of such human experts.
Such programs have the advantage that they can be copied very easily to
produce an infinite number of experts. and of course they do not need tea-
breaks. sleep. pay-rises, etc. either! Of course. the computermust be totally
logical and can still only follow pre-programmed instructions entered by
the programmer. It is intcresting to note that science fictionauthors have
envisaged problems when the ultimate ‘experts’ (such as HAL in *2001: A
Space Odyssey' or lIsaac Asimov's positronic robots) are faced with
alternative courses which conflict with more than one of their prime
directives and which produce not system crashes but ‘pseudo-nervous
breakdowns'.

Before we can start writing programs for ‘expert systems’. we must ask
ourselves how a human expert works.

Let us first consider the simplest situation. where the expert’s task is to
find the answer to a known problem.

First of all he takes in information on the current task.

Secondly he compares this with information stored in his brain and looks
for a match.

Finally he reports whether or not a match has been found.

What we need here is simply a database program which tries to match the
input against stored information (see Flowchart 5.1). A user-friendly
system would accept natural language (see earlier). but to keep things
simple here we will stick to a fixed input format. To start with. let’s look at
recognising animals by the sound they make. We set up two arrays: the
question array QU$(n) contains the sounds which are known. and each

55

Artificial Intelience on the Dragon

Flowchart 5.1 A Simple ‘Expert’

element of the answer array AN$(n) contains the name of the relevant
animal.

15 GOSLIE 10
10993 DIM DUk 0, BHES 4

13610 DATA MIADKW, CAT . WUFF, COG . MO
0, COMWLHOOT . OWL, HE 1GH. HOPSE

10A2: FOR MH=0 TO 4 PEAC QURCH LA
HECH 3 HEXT H

188720 FETURH

Now we just need to ask for a sound and compare it with the contents of

QUS(n)
28 PRINT"WHAT MOISE LOEZ IT MAKE

2B THPUT IH%

4w FOR H=w TD 4:IF IH%=OLUSCHY TH
EN 186

o HEWT M

ER PRIMT'SOREY T GOM'T EHOW THAT
OHE"

0 GOTO 28

183 PPIMT "AM RHIMAL THAT ":0U%C
Hx"S IS5 A "iANSCHD

116 GOTO 2/

56

Chapter 5 Expert Svstems

Perhaps we should say at this point that our computer expert may well be
better at this task than the human kind, as it cannot make subjective
judgements, become bored. or accidentally forget to check all of the
information in its memory. On the other hand it is not very literate as it
reports‘A OWL’, etc. (We will leave youtotidy that up by addingaroutine
which checks whether the firstletter of the answerarray match is a vowel.)

Branching out

The example above isvery simpleasonlyonequestionisasked,and thereis
only one possible answer. In reality we need to be able to deal with more
difficult problems, where the answer cannot be found without asking a
whole series of questions. For example, what should an expert do if he put
the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLAT BATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause. he should follow a logical path and make a number of
checks. Thefirst thingtodois to check whether it is only the starter motor
which is not working:

IS IGNITION LIGHT ON? (Y/N)

Ifthe answer to thisis ‘N’ then there is no powerat the switch. so the cause
must be one of the first three possibilities listed above. We can narrow
things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY”? (Y/N)

Ifthe answer is yes.thenthebattery cannot beflatand it mustbe connected
to the light switch correctly. So presumably the switch is broken and a
suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work, then the connections should be checked.

57

Ariificial Intelligence on the Dragon

ARE BATTERY CONNECTIONS OK? (Y/N)

If theanswer is yes, thenthe battery isflatso you must charge it (or push!)
CHARGE BATTERY OR PUSH CAR

In the same way, a sequence of checks could be made to deal with a

situation where there is power but the starter mechanism itself does not
work (the last three possibilities).

1GNITION
LIGHT
ON ?

Flowchart 5.2 A Branching ‘Expert’

The simplest way to program this branchingstructure is by a series of IF-
THEN tests (see Flowchart 5.2).

16 PRIMT"FRULT DIAGHOSIS"
20 PPINT

58

Chapter 5 Expert Svstems

20 PRIMT"IS IGHITIOM LIGHT 0OM (Y
st

48 INPUT Ir&

S5 IF IN®%="Y" THEM 120

50 PRINT'DO LIGHTS bOPK COPPECTL
OV oM I

73 INPUT IM%

80 IF IM%="Y" THEM 114

95 PRIMT"REPLACE IGHITION SWITCH

180 RUM

114 PRIMT"HARE BATTEPY CONMECTIOM
S 0K Y/

120 IHPUT IM%

138 IF IH%="%" THEM 150

146 PRIMT"REPAIR COMMECTIOHS"

150 PUH

180 PRIMT"CHARGE BATTERY OF PUSH
CAP!"

179 PUH

180 ~—mw-m et ——eee—

This sort of program is relatively easy to write. butas usual is inefficient as
it becomes longer and more complicated.

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays
and have pointers which direct you to the next question or reply, according
to whether you answer yes or no to the current question (see Flowchart
5.3)

The format for entering the DATA for each branch point is, then:
(TEXT),(Pointer for ‘YES’).(Pointer for'NO’)
The first question was:
IS IGNITION LIGHT ON? (Y/N) ... 1
If the answer was ‘N’ then you need to ask the second question:

DO LIGHTS WORK CORRECTLY?(Y/N) ...2

Otherwise you need to continue with the other part ofthe diagnosis(which

59

Ariificial Inielligence on the Bragon

SET
CURRENT
POSITION
(cP=1)

Flowchart 53 Pointing to the Next Output

we have not included but which would be point 7).

We need to set up three arrays: OP$(n) contains the output (text). Y(n)
the pointer for ‘yes’, and N(n) the pointer for ‘no’. To make the program
easy to modify, a variable NP is used for the number of points. The DATA
is read in groups of three into each element in these arrays. Where the
DATA pointis a possible end of the program. this is indicated by the Y(n)
and N(n) pointers being set at zero.

161 GISUE 1ADEE

1iE0Ae
12213
11689

nLT2
11319

CTLY™,

11926
11129

HP=7
DIM OPHCHE 30 HE L HEHP
DATA "1S IGMITIOM LIGHT OM

DATH "00 LIGHTS WORK. COPRE

2.4

DATA "PEPLACE SWITIZH", &,
DATA "APE BATTERY COHMECTI

OHE OK" .5, 6

60

Chapter S Expert Systems

11948 DATA "CHARGE EATTERY COR PU
SH CAR",N.H

11058 DATA "REPAIR CONMECTION" .9
3]

11066 DPATA "-rest of Prodram-",0
)

12080 FOR M=1 TO HP

12310 PERD CPSCMD, 0N o MO D

12020 MEXT M

12808 PETURN

The actual runningroutine is very simple. Apointer CP is used to indicate
the current position in the array: to begin with this is set to 1 and the first
text printed. If this is an end point Y(CP)=0 (hardly likely just yet!), then
CP s reset to I so that the sequence starts again. Onthe other hand, if a real
pointer is present then an INPUT isrequested. If theinputis'Y'. then CP is
set to the value contained in the appropriate element of the Y(n) array.
otherwise it is set to the value contained in the N(n) array.

29 Cp=1
26 PRIMT OP%CCP)

49 IF "W CP=6 THEM 20

SE IHPUT IHE

B0 IF INS="7" THEN CP=CCPX G0TO 20
76 CP=fi CP

36 GOTO 26

A parallel approach

An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usually takes longer than followingan
efficient tree structure, butitis more likely to produce the correctansweras
no points of comparison are omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark 1 or 0 for the presence or
absence of these in each of our five modes of transport (see Table 5.1). If
you look closely you will notice that the pattern of results varies for each of
the different possibilities so it must be possible to distinguish between them
by these features.

6l

Ariificial Imelhgence on the Dragon

‘Table 5.1: Presence or Absence of Features

bicycle car train plane horse
wheels 1 1 1 1 0
wings 0 0 0 1 0
engine 0 1 1 1 0
tyres 1 1 0 1 0
rails 0 0 1 0 0
windows 0 1 1 1 0
chain 1 0 0 0 0
steering 1 1 0 1 1

We will enter these values as DATA and then READ them into a two-
dimensional array FE(n,n) which will hold a copy of this pattern. together
with a string array containing the names of the objects OB$(n).

1A GOSUB 180an
19mAB DIM OP%(S ».FE(S.82
1169m9 DATA BICYCLE,1.0,9.1.9.0.1

11919 DATA CAP. 1.8,

1.1.9,1.,851
11926 DATA TPAIM.1.0.1,0.1,1,0,9
1193@ DATA PLANE.1.1.1,1,A.1,0,1
11048 DATA HORSE.H.0.9.0,A.0,0,1

12809 FOR M=1 TO S
12010 PEAD OBEC N
12620 FOF M=1 TO &
12030 PERD FEC N, M>
12040 NEXT M,N
13m0 RETUPN

We can now ask whether the first feature is present or not and use thereply
to print out which modes of transport match at this particular point (see
Flowchart 5.4)

1Aa PPINT"DLOES IT HAYWE LIHEELS"
S IMPUT TH%

516 AH=1:1F IH%="H" THEM HH=R
520 FOR N=1 TO 5

530 1F FEC(HN. 1\'HN THEH FRINMT OB%
N

S4B HE-T M

62

Chapter 5 Expert Svstems

Flowchart 5.4 A Parallel Approach

In this case, answering ‘Y™ will produce a print-out of

BICYLE
CAR
TRAIN
PLANE

and answering ‘N” will produce a print-out of only:
HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as, although we have just shown that only a horse does not have wheels, the
program insists that we still ask all the other questions before it commits
itself. This is not really as silly as it seems at first, as if you answer ‘Y~ to the
next question (‘does it have wings’) you will see that the computer quite
logically refuses to believe in flying horses.

63

Artifictal Intelligence en the Dragon

If we put the actual comparison part as a subroutine we can use it to
check for all eight features in turn. We would need to make slight
modifications, adding an array pointer AP which is incremented to check
the next element of the feature array FE(N,AP) in each cycle (see
Flowchart §.5).

Flowchart 5.5 Checking the Features in Turn

189 PRIMT"DOES IT HRYE WHEELS"
116} GOSUB 760

129 PPINT"DOES IT HAVE WIMGS*
130 GOSUB 506

146 PRIMT"DOES IT HARYE AM EMGIME

1508 GOSUR Sa0
150 FPIMT'DOES IT HAYE TYPES!
170 GOSUR S5aR
123 PPINT"DDES IT HEED RRAILS"
199 [0SUE See

Chapter 5 Expert Systems

0 PPIMT"LOES IT HAYE WIMCOMS"
H# GOSIE 579

) PRINT"DOES IT HAYE A CHRIM"
A GOSUE 590

246 PRINT"IS IT STEERRELE"

200 GOSUB 500

433 PRINT

410 RUN

510 AP=AP+1:AN=1:1F ItE="N" THEM
Al=0

520 IF FECHM,AP)>=AM THEM PRINT CE
BCMD

TEN PETUPH

IR RSN
BN - S

Top of the pops

The previous routine will print out a list of matches for each individual
question as it proceeds, but it will not actually tell us which set of DATA is
an overall match for the answers to all the questions. We can produce a
SCORE which shows how well the answers match the DATA by having a
success array element SU(n) for each object, which is only incremented
when a match is found FE(N,AP)=AN (see Flowchart 5.6).

INCREMENT
SUCCESS
(SUN))

Flowchart 5.6 Measuring Success

260 PRINT
270 PRIMT"SCORE"
280 PRINT
308 FOR M=1 TO 5

65

Artificial Intelligence on the Dragon

319 PRINT OB%(HY.SUCND

320 NE¥T N

530 IF FECNLAP =AM THEN PRINT DB
WOND: SUCNI=SUCH I+

1AA1e DIM SUCS)H

If a complete match is found then SU(n) will be equal to 8. Where one or
more points were incorrect the score will be lowered. Scoringin thiswayis
particularly useful where the correct answers to the questions are more a
matter of opinion than fact (eg is a horse really steerable?), as the highest
score actually obtained probably points to the correct answer anyway.
(Notice that in this case each correct answer has equal weighting.)

Better in bits

You may have noticed that we just happened to use eight features for
comparison and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a byte. If we consider each
feature as representing a binary digit (see Table 5.2), rather than an
absolute value, then each object can be described by a single decimal
number which is the sum of the binary digits, instead of by eight separate
values. We will convert to decimal with the least significant bit at the top so
that, starting from the top at ‘wheels’, each featureis equivalent to [, 2,4.8,
16.32, 64, 128 in decimal notation.

Table 5.2: Binary Weighted Features

bicycle car train planc horse
wheels 1 1 1 1 0
wings 0 0 0 2 0
engine 0 4 4 4 0
tyres 8 8 0 8 0
rails 0 0 16 0 0
windows 0 32 32 32 0
chain 64 0 0 0 0
steering 128 128 0 128 128
sum total 201 173 53 175 128

It is not too difficult to convert our ‘score’ of I to 8 into the appropriate
binary value, as long as we remember that the decimal value of the binary
digit BV must double each time we move down, and that we must only add
the current binary value to the score if the answer was ‘yes' (AN=1, see
Flowehart 5.7).

66

Chapter S Expert Systems

Flowchart 5.7 Producing a Binary Score

If you consider for a moment, you will realise that we only need to keep
track of the total number produced, SU, by adding the binary values of the
‘yes” answers. There is no need to loop through and check each part of the
array contents each time, or even to have a two-dimensional array at all!
The only DATA we need to enter are the overall decimal values for each
object, DV(n), and when all the questions have been asked we can check
these against the decimal value obtained by the binary conversion of the
‘yes/no’ answers, SU (see Flowchart 5.8). The simplest thing foryou to do
now is to delete everything after line 260 and start entering from scratch
again!

g PRIMT."SCORE":
FRINT

67

Ariificial Inteligence on the Dragon

ZA FOR H=1 TO 5

218 IF DW MO=3 THEM FRINT. "0BE,
M GOTO 420

320 HEXT M

23 PRIMT. "ORJECT HOT FOUML!
460 FEINT

41@ PUM

5Re IMPUT IH%

5160 AM=1 IF IME="N" THEH AH=A
528 IF Ab=1 THEM SU=SL+BY
w3 BY=BY+EY

548 PETURM

16908 DIM PSS 1, DA S
161y BY=1

119a DATA BICYCLE. 201

11816 DATA CAP. 1772

11aze CATA TRAIM, G2

1182a DATA PLAHE. 1795

11a4a DATA HORSE. 122

12060 FORP M= TO S

1200 PEAC DBSCH D DYCH D
12620 HEXT H

12008 RETURH

atl

Flowchart 5.8 Matching the Decimal Value

This approach obviously saves a let of memory and time, as each array
element takes up several bytes and must be located before it can be
compared, so it is particularly useful where you are dealing with large

68

Chaprer S Expert Systems

amounts of information. On the other hand, it does mean that you have to
calculate the decimal equivalents of all of the bit patterns before you can
use them, and it also gives you no clues when a complete match is not
found. (Note that you cannotsimplytake thenearest decimal valuehere, as
the decimal equivalent value of each correct answer depends on its
position.) Of course you could do the calculations the hard way, butif you
enter the bit patternas a string, I$, then itisquiteeasy to convertit to the
equivalent decimal value DV by comparing each single character slice
MIDS$(1$,N,I) with ‘" and then adding on the value of the appropriate
binary digit BD if a match is found.

Zarpan Bh=1: IMPUT 1%
20010 FOR N=1 TO €
IF MIDSCI% M. 10="1" THEH [

23 BL=BD+BD
2004 HEXT M
20059 PRINT [
29950 PUN

69

CHAPTER 6
Making Your Expert System Learn for
Itself

Although the ‘expert’ systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance, which can be very tedious.

However, it is possible to construct an expert program which can learn
from its mistakes and work out the decision rules for itself, provided that
you can tell it when (although not where) it goes wrong. This is obviously
an advantage if you are not altogether sure of the correct rules yourself
anyway! In this case we start out with a series of features which should
enable us to distinguish between the different objects, but withoutany pre-
defined yes/ nopatternof these features(‘decisionrule’) to guide us. Instead
we use the program itself to calculate what the pattern should be.

We will work with our familiar transportexample and begin by setting
up some variables. FE is the number of features to be considered (8),
FE$(n) is an array containing the names of these features, FV(n)is anarray
which will hold the values which you give to each feature as input at any
particular point (0 or 1), and RU(n) is an array which will hold the current
overall values of the decision rule on each feature.

A DIM FESCFE D FACFE L FLCFE S
1Bz FORE H=1 T FE
19630 RERDL FE$IM
laB40 HEAT
11908 DATA WHEELS, WIMGS, EHGIME, T
YRES, PAILS, WIMDOWS . THAIM, STEERIH
la
12868 PETURPM

Each feature is considered in turn (see Flowchart 6.1). First the current
feature value FV(n) for this cycle is set to zero, and then a ‘yes/no’ input
INS$ is requested from the user on each point. If IN$ is ‘Y’ the feature value
element FV(N) is set to I; otherwise it remains setatzero. This will produce
a pattern which describes the object as ‘0’ and ‘1" in array FV(n)

7

Artificial Intelligence an the Dragon

NO
YES UPDATE
RULE

Flowchart 61 Learning to Distinguish Between Two Objects

63 FOR MN=1 TO FE

78 FVINI=p

80 PRIMT FE®(NY: " '

33 IM&=IMKEYS: IF IH%="" THEN 59
1A PRINT INS,

110 IF IH&="Y" THEM F¥{MO=1

126 MEXT M

Before you start a decision variable DE is set to zero. This is recal-
culated as the sum of the current value of DE, plus each of the feature
values FV(N) entered, multiplied by the current decision rule values
RU(N).

125 DE=9

130 FOP M=1 TO FE

1990 DE=DE+F'/CNY$FUCH)

158 MEZT M

173 PRINT "DE= ":DE

72

Chapter 6 Making Your Expert System Learn for liself

Which is which?

To start with we will consider the simplest situation where there are only
two possibilities — a bicycle or a car. Initially we make the distinction
between these quite arbitrarily by saying that if the final value of DE is
equal to or greater than 0 then it is a bicycle, whereas if DE is less than 0
then it is a car. It does not really matter that this is not actually true as the
system will soon correct itself. When the program has made a decision on
the basis of the value of DE it requests confirmation (or otherwise) of the
result.

180 IF OE>=0 THEM PRIMT"IS IT A
BICYCLE ".:INPUT IN%®:GOTO 290
190 IF DE<@ THEMN PRIMT"IS IT A C
HR ' INPUT IN$:GTO 220

Three possible courses of action may be taken according to whether or not
the computer’s decision was correct. If it was correct then effectively no
action is taken (a weighting variable WT is set to zero), and the program
loops back for another try. [f DE was >=0 but the computer was wrong,
then the weighting variable WT is set to minus one, whilst if DE was <0
but the computer was wrong then WT is set to plus one.

206 IF IM&="Y" THEM WT=0:GOTO 24
5]

210 WT=-1:GOTU 240

220 IF IM&="*" THEM WT=0:50T0 24
7]

230 WT=1

The effect of the weighting variable is to modify the valuesin the rule array
RU(N), pulling them down when they are too high, and pulling them up
when they are too low.

248 FOR 1 TO FE

250 RUCH 3=RUCN J4FVOHOEWT
268 PRINT RUCMD,

27F HEXT H

228 PRINT

296 (010 60

The way the system operates is best seen by a demonstration. Type RUN

and then follow this sequence of entries. (Note that the punctuation has

been designed to give a screen format which clearly indicates the

relationship between your input values and the decision rule values.)
First of all enter these values:

73

Artificial Intelligence on the Dragon
WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAINY STEERING Y

The program will return with a decision vatue DE of zero, as this is the
initial value and no modifications have yet taken place:

DE=0

As DE is 0, the system assumes that this is a bicycle and asks for
confirmation, to which the answer is of course ‘yes’.

ISIT ABICYCLE?Y

The print-out of the contents of the rule array R U(n) shows that these have
not changed fromzeroas thecorrectanswer was, by purechance, obtained:

0 0 0 0
0 0 0 0
Now try entering this sequence, which describes a car:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAIN N STEERING Y

DE is still zero, so the wrong conclusion is reached and the wrong
question is asked, to which the answer must be ‘no™

DE=0

ISIT ABICYCLE? N

Now, as a mistake was made, the decision rule is modified by subtracting
one from each value in the rule array where a ‘yes’ answer was given. The
contents of the rule array thus become:

-1 0 | -1

0 -1 0 !

If you once more enter the values which describe a car, the program will
come up with the correct answer:

WHEELS Y WINGS N ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAINN STEERING Y
DE=-5

ISIT ACAR?Y

=1 0 =1 |

0 -1 0 =1

74

Chapter 6 Making Y our Expert System Learnfor lrself

Before you feel too pleased with yourself, try giving it the values for a
bicycle again, which it will get wrong!

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAIN Y STEERING Y
DE=-3

ISIT ACAR?N

0 0 =1 0

0 -1 1 0

However the positive features which are common to the bicycle and the car
are now automatically increased by one, so that if you repeat this last
sequence it will now produce the correct conclusion:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAIN Y STEERING Y
DE=1

ISIT A BICYCLE? Y

0 0 =l 0
0 ! 1 0

The situation has now stabilised and the program will always recognise
both car and bicycle correctly every time you enter the features which
describe them:

WHEELS Y WINGS N ENGINE Y TYRESY
RAILS N WINDOWS Y CHAINN STEERING Y
DE=-2

ISITA CAR?Y

0 0 -1 0

0 =1 1 0

Notice that the final value of DE for a bicycle is I, and foracar—2. If you
look at the rule array values, you will see that these correspond in both
numberand position to the uniquefeatures which distinguishthese objects
(CHAIN for bicycle, and ENGINE and WINDOWS for car).

75

Ariificial Intelhgence on the Dragon

A wider spectrum

Although you have now managed to teach your computer something, it is
not exactly earth-shattering for it to be able to distinguish between only
two objects. Let's expand the system to deal with a wider spectrum of
possibilities (see Flowchart 6.2). To start with we need to define the

Flowchart 6.2 Learning the Rules for a Wider Spectrum of Possibilities

number of objects we wish to be able to recognise OB, name them as
DATA which we READ into a new array OB$(OB), change our decision
rule array into a two-dimensional form, RU(FE,OB), which can hold
rules for each of the objects separately, and set up adecision array DE(n)to
hold decision values for each object.

76

Chapier 6 Making Your Expert System Learn for [tself

13 GOSLIB 196pa

1900n FE=8:(B=3

19610 DIM FESCFE », FY(FE 2. RUCFE, D
Ee>.0B% 0B >, DECOE »

13923 FOR N=1 TO FE

13P37A PEAL FE®IN:

10940 NEXT M

10038 FOR N=1 TO OB

1ABEA READ UB%(H >

19070 MEXT H

11808 LATA WHEELES, WINGS, ENGINE, T
YPES,RAILS, WINDOWS. CHAIM. 3TEERING
11910 DATA BICYCLE.CAR, TRAIN,.PLA
ME. HORSE

12000 RETLIFH

Rather than just having a single decision variable DE, we need here to
determine a decision value foreach object each time. In each cyclewe must
first set DE to zero, and then zero every element in the decision array
DE(n) so that we start with a clean slate for every object.

20 DE=8

2@ FOR N=1 TO OB
41 DEC M)>=B

59 MEXT N

The values for each feature are then entered in exactly the same way as
before.

58 FOR N=1 TO FE

70 FY(M>=0

20 PRIMNT FE&CMD; "'

‘38 IN$=IMKEY%:IF IM®="" THEM 90
18 PRINT IHE,

116 IF IM%="¥" THEN FY(Ni=1

128 NEXT N

Each element of the decision array DE(n) is now updated according to the
status of the entered values FV(n) and the contents of the appropriate rule
array element RU(n,m).

120 FOP H=1 TO FE

149 FOP M=1 TO OB

186 CEMO=0ECM 04+F W HIERLICH M
168 MHEST MLM

77

Artificial Intelligente on the Dragon

We now need to look to see if any of the decision values for any of the
objects DE(n) are greater than or equa! to the overall decision value DE.
If this is true, weseta ‘top score’ TS variable equal to the number of the
object producing the best match.

179 FOR M=1 TO 0B

ied IF DECHI»=DE THEM DE=DECM): TZ=H
194 HEXT M

The best guess of the system is that this is the correct answer, so onceagain
it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

208 PRIMNT "WAS IT "“:0B&KCTSH:" "
218 [H$=IHKEYS:IF IHw="" THEH 218
215 PRINT IH%

zen IF INS="%" THEH 2%

If this was not the correct answer, the names and numbers of all the objects
are printed out and you are asked for the number of the correct answer
CR. (The limitations on CR prevent you crashing the program by
entering an illegal value.)

220 FOP H=1 TO D&

249 PRINT M, 0B%CH

258 MEXT H

260 PRINT "WHICH WAS IT":

276 INPUT LP:IF CR41 OR CR:3 THE
N z7ra

A check is now made to see if the decision value for each object DE(n) is
greater than or equal to the overall decision value DE and whether the
object being considered is not the correct answer. If borh of these are true
then the rules are updated again by subtracting the correct feature values
FV(n) to bias in favour of the correct answer.

220 FOR M=1 TO OR

29d PRIMT DECH » DR, CR

300 IF DECHY>=DE AMD M<>CR THEHW
FOR M=1 TO FE:PLICM, H=RLICM, MI-FY
CMY:HNEAT M

310 HEAT H

Now the correct feature values FV(n) are added to the rule array for the
correct object, to bias in the opposite direction.

78

Chapter 6 Making Your Expert System Learn for [uelf

» FOR M=1 TO FE
330 RUCH, CRO=PLICM. TP 4PV M
340 HEHT M

Finally the statuses of the rule arrays are printed out so that you can see
what is happening.

25p FOR M=1 TO OB
260 FOF M=1 TO FE
370 PRIMT RUCH, M5,
280 MEWT M

398 PRINT

4nn HEXT 1

414 GOTO 20

Once again a demonstration is the best way to understand what is
happening so enter the following sequence:

WHEELS Y WINGS N ENGINE N TYRES Y
RAILS N WINDOWS N CHAIN Y STEERING Y

The program will come back with the erroneous conclusion that it was a
horse, so you must tell it that this was wrong, when it will ask you for the
correct answer (bicycle = [):

WAS IT HORSE N

BICYCLE
CAR
TRAIN
PLANE
HORSE

[N

WHICH WAS IT 1

The statuses of the various decision and rule arrays are now printed out for
yourinformation (note that the labels shown here are not included on the
screen).

(DE(N)) (DE) CR)

(
0 1
0 1
0 1
0 1
0 1

coococo

79

Artificial Intelligence on the Dragon

1

Lo
cooco

A B

(A=wheels
=rails

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels, tyres, chain and steering — all
features which we defined as part of a bicycle and not found in a horse. In
addition, you will see that the values for these features in the bicycle rule
array are now all plus one. whilst the values for these features for all the

cococoo

cocoococo

E

B=wings

F=windows

cocoococo

C=engine
G=Chain

other objects are now all minus one.

Now give it the features of a car, which it will think a bicycle, and then
correctit. Noticethatthe rulearrays for bicycle and car are now amended to

take into account the new information.

WHEELS Y

RAILS N

WINGS N

WINDOWS Y CHAIN N

WAS IT BICYCLE N

BICYCLE

CAR

TRAIN

HORSE

1

2

3

4 PLANE
5

w

HICH WAS IT 2

3
-3
-3
-3

)
coocoo

W ww W

cocococo

ENGINE Y

(bicycle)
(car)
(train)
(plane)
(horse)

D=tyres
H=Steering)

TYRES Y

STEERING Y

-1
-1
=1

(bicycle)
(car)
(train)
(plane)
(horse)

Chapier 6 Making Your Expert Sysiem Learn for Iiself

A B C D E F G H
(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=chain H=steering)

Next give it a plane, which it decides is a car, and correct it again.

WHEELS Y WINGS Y ENGINE Y TYRES Y
RAILS N WINDOWS Y CHAINN STEERING Y

WAS IT CAR N

BICYCLE
CAR
TRAIN
PLANE
HORSE

©woawN -

WHICH WAS IT 4
And now a train, which it still gets wrong!

WHEELS Y WINGS N ENGINE Y TYRES N
RAILS N WINDOWS Y CHAINN STEERING N

WAS IT PLANEN

BICYCLE
CAR
TRAIN
PLANE
HORSE

LA LN —

WHICH WASIT 3
And finally a horse, which comes out as a plane!

WHEELS N WINGS N ENGINE N TYRES N
RAILS N WINDOWS N CHAIN N STEERING Y

WAS IT PLANE N

1 BICYCLE
2 CAR

81

Ariificial Intelligence on the Dragon

3 TRAIN
4 PLANE
5 HORSE

WHICH WASIT §

If you continue to feed your expert information, eventually it will get the
right answer every time. How long this will take depends upon the extent of
the differences between the features of the objects, and on the order in
which the objects are presented to the expert. Be warned that it can take a
long time before it becomes infallible. Here is one sequence which
eventually came out right every time.

plane (train) car (plane) bicycle (YES)
car (YES) plane (car) plane (YES)
horse (YES) plane (bicycle) car (plane)
plane (car) plane (car) car (plane)
car (YES) plane (car) plane (YES)
car (YES) plane (YES) horse (YES)
bicycle (YES) train (car) train (YES)
bicycle (YES) car (plane) car (YES)
plane (car) plane (YES) car (plane)
car (YES) plane (YES) car (YES)
bicycle (car) car (YES) plane (YES)
train (YES) horse (YES) bicycle (YES)

To see the final state of the rule array when the ultimate state is reached,
you can stop theprogram and thentype GOTO 350 as a direct command.
As the final scale of values ranges from +6 to —2, you should not be
surprised that it took a long time to get there.

1 0 -1 1 0 -2 3 0 (bicycle)
-1 4 1 0 =1 1 -2 0 (car)

0 -1 1 -2 2 1 -1 —2 (train)
-2 6 0 0 -1 0 -2 —2 (plane)
-1 0 0 -1 0 0 | 0 (horse)
A B C D E F G H
(A=wheels B=wings C=engine D=tyres

E=rails F=windows G=chain H=steering)

Of course, in a real application of such an expert system you could feed ita

82

Chapter 6 Making Your Expert Svstem Learn for liself

mass of collected information and conclusions on a subject area and then
leave it alone to digest this and to come up with the rules in its own good
time. As these rules are stored inarrays you could easily writea routine to
save these for re-use later.

83

CHAPTER 7
Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. Forexample, English isa very variable
language and there are frequently alternative spellings of the same(orvery
similar) surnames, which can cause difficulties.

One way around this problem is to try to match the sound of the word,
rather than the actual letters in it, by means of ‘Soundex Coding’, which
was originally developed to assist processing of the 1890 censusin the USA.
This method of coding ensures that similar-sounding words have almost
the same code sequence.

The rules for coding a word are as follows:

1) Always retain the first letter of the word as the first character of the code.
From the second letter onward:

2) Ignore vowels (a, e. i, 0, u).
3) Ignore the letters w. y, g and h.
4) Ignore punctuation marks.

5) Code the other letters with the values 1-6 as follows:

Letters Code
bfpv 1
cgiksxz 2

de 3

1 4
mn 5

r 6

6) Where adjacent letters have the same code only the first one is retainec
7) If length of code is greater than four characters then take first fouronly.

8) If length of code is less than four characters then pad out to four
characters with zeros.

85

Ariificial Intelligence ort the Dragon

To make this clear here are some examples of Soundex Coded names:
BRAIN - B650

(B is retained, R is 6, A and [are dropped, N is 5 and a zerois added to pad
out the code.)

CUNNINGHAM - C552

(Cis retained, U isdropped, bothNsare represented by thesingle code5, lis
dropped, thethird N is represented by S, G is 2, H and A are dropped, and
M is coded as 5 — but the resulting code (C5525) is truncated to four
characters.)

GORE - G600

(G isretained, O isdropped, Ris 6, E isdropped and zerosare added to pad
the code.)

IRELAND - 1645

(I is retained, R is 6, E is dropped, L is4, A is dropped, N is 5 and D is 3—
but the resulting code (16453) s truncated to four characters.)

SCOT - 8230

(S isretained, C is 2, O isdropped, T is 3and zerois added to pad the code.)
If your name is full of vowelsand other rejected letters, then you will find
that your code is somewhat abbreviated!

HEYHOE - H000

(H is retained, all the other letters are rejected (!), and thecode is filled up
with zeros.)

Coding routine

To save all that brainwork, let’s develop a program which allows you to
input a word in English and output it in Soundex Code (see Flewchart
7.1). The first thing to do is to jump to a set-up routine which reads each
group of the retained letters into one element of a Soundex Code string
array SC$(n). (Note that the letters are arranged so that they are in the
array element corresponding to their code value.)

86

Chapter 7 Fuzzy Matching

[ineur |/ TAKE 18T
LETTER
NANE AS CO$

SET TM$ TM$ =
ODE.
il NUMBER

Flowchart 7.1 Producing a Soundex Code

19 GOSUR 190nn

18000 DIM SCHE

11699 DRTA BFPY,CGLJIKSAZ,DT,L,MH.P
128098 FOR N=1 TO &

12013 PEAD SCHCH>

12020 HEXT N

13000 RETUPH

We can now input the word to be converted, IN$, and, to begin with,
make the coded version of this, COS, the first letter of that word
(following the first rule above).

87

Artificial Intelligence on the Dragon

196 IHPUT IN%
119 CO%=LEFTHC IM% 1

We now needto check the other letters of the word, 2 TOLEN(INS), inturn
after first making a temporary string TM$ equal to the current letter to be
translated.

120 FOR H=2 TO LEM IN%)
120 TME=MIDEC INS, M, 1)

As conversion to the code numbers will be required at various pointsinthe
final problem, we will set up this process as a subroutine at line 1000.

140 GOSUE 1906

We have to check TM$ against each individual letter in each group of
letters SC$(n) to find a match. To check each letter group, we have to go
round six times, making a search string SE$ the current Soundex Code
group, and using INSTR to check each letter in the group against TM§
inturn,

1900 FOR P=1 7O &
1910 SE$=SC%CP>
1920 SP=IMSTR: 1,SE%, TM%>

When the INSTR check has been made, we have to determine whether a
match has been found to any of the Soundex groups, and if so, to which
group. If nomatch is found then SP will be set to zero. If a match/s found
then SP will be set to M which will point to the value of the code group
matched.

If a match is found, SP>0, then weconvert the numeric value ofthe loop
scanning the code groups P to a string TM$ which replaces our original
temporary string. (The STR$ command converts a number into a string,
but wealso need touse RIGHTS as STR$ automatically adds a space on to
the front of the number string.)

If no match is found in that group, we have to check the next group.
iP40 HEXT P

If no match is found at all, then TM$ must contain one of the characters to

88

Chapter 7 Fuzzy Maiching
be ignored. So we reset TM$ empty [$=""] and RETURN.

1450 THME=""
18£8 PETLIRH

We can now make the coded string CO$ equal to the original coded string
plus the newly converted character TM$.

170 CO%E=CO%+TMS
Now we loop back to deal with the next character in INS.

19 HEXT M

When the end of IN$ is reached, we print out the input IN$ and the entire
coded string CO$ before going back to 100 for another input.

210 PRIMT PRIMT “HAME"."COCE":FR
INT IM%.CO$

320 L0TO 100

If you input the name STEVEN you will nowgetthe code S315 which is
correct. However, if you try BRAIN or CUNNINGH AM you will getthe
codes B65 and C55525 respectively. The code for BRAIN is too short and
needs padding out with zeros. and the code for CUNNINGHAM is too
long and the same codes are repeated one after another for the letter N.

Dealing with the details

To solve the problem of the repetition of thesame code foradjacentletters,
we need to keep arecord of the lasttemporarystring LT$. We need to make
LTS$ the code of the first character in IN$ to start with, so that the initial
letter is not repeated. As we go through the FOR-NEXT loop. we must
compare LT$ with TM$, and if they are the same we must not add TM$ to
COS3. Otherwise we need to make LTS the latest TM$.

110 TME=LEFT®: IHHE, 10: COE=TME: GOS

UB 1069: [TH=TM%

150 IF TH$=L.T% THEH L0TO 189

160 LTH=TME

Now we can sort out the problem ofthe codebeingtoo short. First of all we
check thelengthof thestring LEN(CO$)<4. If it is too short, we add three
zeros on to the end and then use LEFTS to cut the string back down to the
correct size (four characters).

89

Artificial Intelligence on the Dragon

|
|
|
|
1
|
e, J
|
1
J
J
|
|

| sut
I

Lo

™S =
SET TM$ o
EMPTY NUMBER

Flowchart 7.2 Dealing with the Details

190 IF LEHCCO% 144 THEW CO%H=CO%+"
210" CO%=LEFTHCO%, &5

Finally, if the string is too long then we cut it down to size with
LEFT$(CO$4) again.

206 IF LEM:CO%3»4 THEM COW=LEFT®

LCO%. 40

90

Chapler 7 Fuzzy Maiching

Matchmaking

Now that we have a reliable method of producing the Soundex
Codes, let’s give it something to work on. The first task is to read a
list of names out of DATA statements into a name string array NAS$(n).
Our demonstration list only consists of eighteen names — if you want
more, a quick flick through your local telephone directory shoutd soon
solve that problem! Note that the number of words is also stored as NW.

10019 HW=17:DIM MABCHL

11318 DATA AERPAHAM, ABRAHAMS . ABRA
M3, ADAM. ABAMS, ADDAMS, ADAMSOM, ALA
H.ALLAM, ALL.EM

11020 DLATA ANTHAMY, AMTHOM'' , AMTDM
¥..AHTROBUS, AFPERPLEY.. APPL.EREE, APP
LE®" . APPLEFORD

12A38 FOF M= TO 17

17840 RPEAD MAL(N

12058 MEXT H

The whole idea of matching with Soundex Codes relies on the factthat you
use the Soundex Code to make the match before printing the possible
words. We therefore have to find the codes for each of the names from the
DATA and put these codes into an equivalent string array NC$(n). The
routine to find the Soundex Code is virtually identical to the one used to
find the code of an input, as described above.

10628 DIM NCHECHWD

12P6A PRINT:PRINT "NAME","CODE"
PRIMT

12070 FOR ©=@ TO NW

12030 PRIMT MAECH >,

12090 TMS=LEFTRCMABLEG 1, 1 > COH=TM
& GUSUB 1000 :LTSsTHE

12190 FOR M=2 TO LEMCHAS(D)
12110 TME=MIDBCMAKCO 2, N, 12

12120 OosSUE 1008

12120 IF TM%=LT$ THEHM HEMT M:GOT
D 12170

12140 LTH=TMS

12150 CO%=CO%+TM%

12160 NEXT M

12178 IF LENCCO%)><4 THEN CO%=CO%
+"00A" : COS=LEFTS(CD%.4)>

91

Artificial Inielligence on the Dragon

12196 1F LEMCCO% »>4 THEW CO%=LEF
T4(C0S.4)

12196 PRINT CO®

12200 MNCECHI=CO%

12218 NEXT R

If you RUN this now, you will see all the codes for the DATA produced
before the input request.

NAME CODE
ABRAHAM Al65
ABRAHAMS Al65
ABRAMS AL6S
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY AS535
ANTHONY AS535
ANTONY AS535
ANTROBUS AS536
APPERLEY Al6d
APPLEBEE Aldl
APPLEBY Aldl
APPLEFORD Aldl

The only thing we need to do now is to find which codes o f these names
match the code of your input and then to print out these names with a
FOR-NEXT loop.

245 PRINT

258 FOR H=m TO MKW

260 IF CO%=HC%(M: THEM FRINT HA%
CH D HCEOH S

278 MEXT N

This will only print words with exactly matching Soundex Codes. For

92

Chapter 7 Fuzzy Matching

example, if you try entering the name APPLEBE you will get the following
response:

? APPLEBE

NAME CODE
APPLEBE Aldl
APPLEBEE Aldl
APPLEBY Aldl
APPLEFORD Al4l

Although APPLEBE (one E at the end!) isnot present in the DATA, we
have found APPLEBEE and APPLEBY, as wellas APPLEFORD (where
the interesting seund at the end has been chopped off).

Flowchart 7.3 Partial Matching

93

Artificial Inielligence on the Dragon

Partial matching

Noticethat onthe otherhand APPERLEY has been rejected, even though
it sounds quite similar at first. It would therefore be useful if we could also
print out partial matches.

This can easily be done by adding an extra FOR-NEXT loop, which
compares a decreasing section of the input LEFT$(CO$,M) with
decreasing lengths of the stored codes LEFT$(C$(N),M) (see Flowchart
7.3).

23@ FOR M=4 TO 1 STEP -1

249 PRIMT PRIMNT M;"CHRPACTERS MA
TCH" : PRINT

268 IF LEFT%CCO%, M) =LLEFTHCMNC&CM)
M3 THEN PRIMT MA%CM > MCECNI

280 PRIMT:PRIMT "PRESS KEY TO CO
NTINUE"

290 IHE=INKEYS: IF IN%="" THEM 29

2]
399 PRINT:PRINT
318 NEXT M

If you now try APPLEBE you can see the whole range of possibilities.

? APPLEBE

NAME CODE
APPLEBE Aldl
4 CHARACTERS MATCH
APPLEBEE Aldl
APPLEBY Aldl
APPLEFORD Aldl

PRESS KEY TO CONTINUE

3 CHARACTERS MATCH

APPLEBEE Aldl
APPLEBY Aldl
APPLEFORD Aldl

PRESS KEY TO CONTINUE

2CHARACTERS MATCH

ABRAHAM Al65
ABRAHAMS Al65
ABRAMS Al65
APPERLEY Al64

94

Chapter 7 Fuzzy Marching

APPLEBEE Al4l
APPLEBY Aldl
APPLEFORD Al4l

PRESS KEY TO CONTINUE

1 CHARACTERS MATCH

ABRAHAM Al65
ABRAHAMS Al65
ABRAMS Al65
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY AS535
ANTHONY AS35
ANTONY AS535
ANTROBUS AS536
APPERLEY Al64
APPLEBEE Aldl
APPLEBY Aldl
APPLEFORD Aldl

PRESS KEY TO CONTINUE

95

CHAPTER 8§
Recognising Shapes

We normally recognise objectsusing our senses of sight,sound, taste and
feel, whereas of course our basic computer can only obtain information
through the keyboard. Whilst itis possible to produce sensors which can be
interfaced with your machine to give itanother view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We willmakedo instead with a simulation
of the action of a light sensor to illustrate how shapes can be recognised.

Let us think for a start about three simple shapes — a vertical line, a
square, and a right-angled triangle.

We can recognise these shapes by looking at the pattern they make onan
imaginary grid and deciding whether or not there is a point set at each X
and Y coordinate.

In the case of a line only the first X coordinate is used, but all of the Y
coordinates. A square is a little more complicated, as all the X
coordinates on Y rows I and 8 are set, and from Y rows 2 to 7 only the first
and last X points are set. Finally, a triangle is even more complicated, as
the slope is produced by incrementing the X axis each time

Table 81 Decimal Values of Shapes Described in Binary Form

Y row line square triangle
1 1 255 1

2 1 129 3

3 1 129 S

4 1 129 9

5 1 129 17

6 1 129 33

7 1 129 65

8 1 255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and to produce a decimal value for each
row, in the same way as we did before when we were looking at expert
systems (see Table 8.1). I nfact this type of approach is used to producethe
characters which you see on yourscreendispiay, the formats for whichare

97

Artificial Intelligence on the Dragon

stored in memory in just this form. For example Figure 8.1 shows how the
letter *A’ is built up

There are now machines availa ble(Optical Character Readers) which can
reverse this process. They actually ‘read” a printed page by scanning the
paper in a grid pattern and measuring whether or not light is reflected at
particular coordinates.

Figure 8.1 Forming the Letter *A'

What they actually take in will be a pattern of ‘yes’ and ‘no’ for each
coordinate, and of course this must then be decoded and compared with the
patterns for known shapes. The most obvious way to make this comparison
would be to consider every point in turn as a binary digit and then to
convert each row back to a decimal value which could be compared witha
table of known values. However this has the disadvantage that we must
actually check every individual point on the grid (64 points)

A branching short cut

A quicker approach relies on the fact that each character can actually be
detected by looking at only a much smaller number of critical features of
the pattern. Forexample, Figure 8.2 givesadecisiontree whichwillfind all

98

66

Figure 8.2a Decision Tree for Alphabet

N 5.1 N
Y
8
15 16
2,4 A
N
17

001

20 2 . .
5.1 54 N 53 7 =
2" 217
47 _
24 @
Y

Figure 8.2b

24

Chapter 8 Recognising Shapes

the capital letters of the alphabet using only 12 points (see Figure 8.3), and
it is not even necessary to check all 12 in any particular case. If you follow
each of the routes, you will see that the maximum number of steps to be

J X
’ X

Figure 8.3 Points Used in Decision Tree

followed is seven, and that most letters are found in less than five steps
(Table 8.2). This must obviously be quicker than comparing all 64 points!

Table 8.2 Numbers of Steps Required for Recognition of Each Character

3steps - 1, D

4steps - L,J,C, G, 0, W

5steps - S, A, Q, R, T, F, U, space
6 steps - P, V, Y, H

7 steps - B, M, N, E, K, X, Z

101

Artificial Intelligence on the Dragon

To demonstrate how this approach works, we will simulate the action of
the scanning head by producing a grid on the screen, on which you can
construct characters.

The text screen start address 1024 is defined as a variable TS as itis used
frequently. The screen is cleared and a red area 6 X 8 blocks is set upin the
top lefthandcorner by POKEing CHR$(191). A yellow (CHR$(159)) 5X 7
grid is then superimposed on this to mark the actual working area (of
course there must be a margin around the edge so that characters do not
merge).

14 GOSUE 19900

1900H TS=1024

120800 CLS

12019 FOR H=1 TO 19
12020 PRIHT

120830 HEMT H

131909 FOP 0 TO 5

131318 FOR ¥= TO &

13020 POKE TS+¥+1 (.32 5 131
13030 THEMT 4

13040 HEMT ¥

13050 FOR »=1T05

13050 FOP Y=1 TO 7

131370 POKE TS+¥+, /1732 1 153

13060 T+EX 4

130309 ¥=1 ! Y=1

13199 PETURM

flashing cursor is now produced to show your position. CP is the current
position on the text screen, TS, the current colour of which is saved as
CC by PEEKing this position. A different coloured block CC+32 is
POKEJ into place andthenthe original colour CC POK Ed back, so that
there is no lasting effect. If no key is pressed, the program loops back
and checks again: when a key is pressed, the ASCII value of A$ is taken
as A.

2A A%=IHKETS

3F) P=TS+X+(/%32 »: CC=PEEKP): POVE
P, CC+32:POKE P,CC

40 IF H%="" THEM 2zM ELSE R=RASCIH
%)

The X and Y coordinates are updated according to movement of the
cursor keys (A=9, 8,10 or %), and if the spacebar (A=32) is pressed the
colour of the current position is set to dark blue, CHR$(175).If you make
a mistake,

102

Chapter 8 Recognising Shapes

pressing ‘X' erases the current position by resetting the colour to yellow,
CHRS$(159), or the CLEAR key (A=12) jumps to the set up routine and
erases all the current grid. Pressing RETURN (A=13) leads to the
decoding routine, or else the program loops back to the keycheck.

5@ IF A=9 THEH X=¥+1

€0 IF RA=8 THEN X=X¥-1

7@ IF A=1A THEN ‘/=‘{+1

899 IF A=%4 THEN Y=Y-1

S8 IF A=32 THEM POKE TS+X+CY%32:
,175

163% IF RA%="X" THEH POKE TS+r+iVY#*
22,159

119 IF A=12 THEH GOSLIE 13069

120 1IF A=13 THEH Z@@9

130 IF ®4<1 THEN ¥=1

148 IF X5 THEH X=5

150 IF ‘¢4 1 THEH Y=1

160 IF Y7 THEH Y¥=7

170 GOT(> 20

Limits must be set to prevent the cursor wandering off the $ X 7 grid area.
128 1F
14 1F

156 IF %<1 THEN
16@ IF vi7 THEM Y

Thedecisiontree is held in a series of linkedarrays whereN Bisthe number
of branches, LE$(n) holds the names of the letters, Cl(n) the X coordinate
to be checked next, C2(n) the Y coordinate to be checked next, N(n) the
nextelement to use if theansweris'no’,and Y(n)the nextelementtouseifthe
answer is ‘yes’.

11887 HE=53

11813 DIM LESTHE 3 C1VHE Y, CZOHE Y,
MHOHR 3 YTHR S

11920 FOR H=1 TO NE

11923 RERD LESCH » C1OH Y CEn M M
FLYOMD

11348 HEXT H

The best way to enter the DATA is probably as 53 separate lines (one for

103

Artificial Imielligence on the Dragon

each branch point), as this makes it easy to enter and to edit out any
mistakes

14310 OATA ,1.1.2.1
14e20 DATA .1,5,2.1
14938 DATR .2.2.4.3
14049 DATA ,5,1.5,8
14650 DRTA .3.1.6,7
14358 DATA " ", ..,
148709 CLATA "8 .., .
14820 OATA "J". ..,
14899 DATA 1", ..,
14168 DHTA . 5.4.11,14
14118 DATA .5.2.12,12
14126 DATA "C", ., ..

14130 DATH "G, ..
14148 DATA ,5.7,18, 15
14150 DATA ,2.,4,17,16
14168 DATA "A".,,.
14178 DATA "B".,,,
141868 DATA "0"...,,
14198 DATA ,S5,1.20.29
14209 DRTA ,35.4.21.2¢9
14218 DATR ,5.3.27.22
14220 DATA ,5.7.22.26
14228 DATA ,5.5,24,25
14248 DATA "P".. ..
142508 DRTR "B".,..
14260 DATH “RP"., ..
14270 DATA "L, ...
14290 DATA "D". ..,
14290 DATA .5, 7.45.30
14308 DATH ,2,6.,21,44
14310 DATA , 5, 3, 32,39
14323 DATA ,1,9,22,36
14330 DATA ,3,1,24,35
14340 DATR "¥"., ..
14358 DATR "Z", ...
14363 DATA ,4,2.32.37
143270 DATA "K",.,.,
14388 DATA "E".. .,
14398 DATA ,2.4.40.432
14408 DATA .4,2.42,41
14418 DATA "M"....

104

Chapier 8 Recogrising Shapes

14428 DATA "H",, .,
14438 DATA "H"., ..
1444@ DATA "W".., .
14458 DATA ,2.1,45,51
14458 DATA ,1.,5,47,50
14470 DATA ,2,4,42,4%
14428 DATA "Y¢", ..,
14450 DATA "¥".,.,
14588 DATA "U".,,,
14518 DATA ,1.,5,52,53
14528 DATA "T",,.,
14532 DATA "F",. ..

If you are more confident (or are trying to save space) then all the DATA
can be condensed on to eight rather unreadable lines which are OK for

those who are good at counting commas. but very difficult to edit.

14418 [HTH s1,1,2,19,,1.5,2, 18,

2,2:4,%.,5,1,.59..2.1,6.72," ",,,
;‘”9”;,31.”J"J,,JJ | T TR)
1.14..5.5,12,12,"C" .., ,"G" a0

LTS, 15, 2,40 17 16 A, L L,
O, 0., ..9,1.260.29.,5,.4,2

SRENLS L 2.4, 40,

14423 DHTH SN HY L
2 01.5.47.56.,2,4, 4°
.49, IRSORTTEISNUNDE Y
LS2LSR TR L L F,

To check the design produced against the patterns available (sec Flowchart
8.1), the array pointer AP is first set to I so that the search is started from
the beginning. X and Y coordinates are read from the Cl (AP)and C2(AP)
elements pointed to, and the last position LP pointer set equal to the
current array pointer AP.

The point colour PC at these coordinates is determined by PEEK(TS+
X+(Y*32)). If thisis 175 then the point has beensetand the‘yes* pointer
Y(AP) must be followed. If any other value is found then the ‘no’ pointer

105

Artificial Intelhgence on the Bragon

Flowchart 81 Character Recognition

N(AP) is followed. Ineither case a check is made to see whether the element
pointed to contains a zero (indicating the uitimate end of a branch), which
shows that a character has been found. If so, the appropriate letter
LES(LP) is printed, and the display is held until a key is pressed, when a
new cycle is initiated. As long as a higher value than zero is found then this
must be another branch point and so the program loops back to 2010 and
picks up the new values of CI(AP) and C2(AP).

To allow you to see which points have been checked, these are set to
different colours as they are found. ‘Yes’ and ‘no’ branches can be
distinguished, as tested points which were not set (PC=175) will now be
cyan (239+16), whilst points which were not set will be magenta (239+0).
Any points which were set but not tested will remain blue.

2048 AP=1

106

Chaprer 8 Recognising Shapes

2610 “=C1cAP):Y=C2CAP »:LP=AP
20720 PC=PEEK(TS+X+('4221)

dﬁ3@ IF PC=175 THEM AP=Y(AP>:GOT
0 7ZR5SA

2040 AP=MCAP

29%A IF AP=D THEM 297%
2HEN POKE TS+M+(Y4323, ¢
FC=173>)>:G0OTO 2014
2070 PRINT LES(LP>
2080 A%=IHKEYSH: IF A$="" THEWM 2082
2]

2A%9 GOSIB 1208A:GOTO 29

SRR £ 4

If you want to see which part ofthe tree was actually followed, then add
these modifications which will print out the sequence followed asacolumn
of numbers to the right of the grid. The blankingstring BL$ defined is used
for partial screen clearance.

2005 PRINT ® 16,"AP" . :LI=1

2055 PRINT B CCLI#22)+162,AP LI=
L1+1

26895 FOP H=1 TO 19:PRIMT @ C(M¥2
234165, EL& HE#T H

13085 BL%="

The disadvantage of this more rapid method, of only checking critical
points, is that it will make a mistaken match if it encounters a shape that is
not on the tree. whereas if all points are checked then no match will be
found in such a case.

Earty Optical Character Readers would only accept a single particular
typeface, but thelatest machines notonly acceptdifferentstyles of type, but
actually learn the recognition rules for themselves by means of a built-in
expert system. You teach these by showing them a few pages of text and
then entering these same characters via the keyboard. However we feel that
it will still be a long time before anyone can produce a machine that can
read OUR handwriting!

107

CHAPTER 9
An Intelligent Teacher

Another place where Artificial Intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student’s knowledge at random, but this is not how a real human teacher
works. As well as asking the questions, he keeps aneye onthe progress ofthe
students, increases the difficulty of the questions as experience increases,
and tests them more rigorously on thetypes of problems with which they are
having difficulties. For example, if a child takes a test involving addition,
subtraction, multiplication, and division, but only gets the division-type
questions wrong, then it follows that the child should be given more
division questions in the future to provide more practice.

Let’s have a look at how we canintroduce these ‘human’ qualitiesinto a
teaching program.

Questions and answers

We need to create random numbers to be used in the first question,
which we will make addition. Using INT(RN D(0)*10) will give numbers
between O and 9.

20 A=THTCRHI(B ¥ 14
26 B=IMTORHOCA ¥ 100

The computer adds these together and then goes on to an input and
checking subroutine at 1000.

48 C=A+B:GDSUR 1009
First, the routine must print the question and input your answer [P.

140 PRINT f; "+ B =h
1o THPUT TP

Your answer must then be checked. If the program answer Cisthe same as

your answer, then CORRECT is printed and the routine returns toline40.
Otherwise WRONG is printed followed by the correct answer.

109

Ariificial Intelligence on the Dragon

“3293 IF C=IF THEW PRIMT “CORRECT
CPETURM
19209 F‘F‘INT "BIROMG, CORRECT AMSHE

3
104171 F‘FTUPH

The other three subjects (subtraction, multiplication, and division) can be
easily dealt with in the same way ifwe replace the‘+ signinline 1000 by a
sign string SG$, which we can set to the appropriate character at the time.
As INT(RND(0)*10) is common to all the calculations, we might as well
define this as a function R.

15 DEF EMRCRI=IMTIRNDOI3E16 0
26 A=FNRCAD D

20 B=FHRCAD >

40 SGB8="+":C=A+E: GOSLIE 1600
5A A=FNRCS5UD

A B=FNR{SU)

7A SG%="-" C=A-B:GOSUE 1980
20 A=FNR{M >

50 B=FNR{MU?»

199 BGE="#%" C=A%E GOSUE 1060
110 A=FHRODI)

120 B=FNR(DI)

; (C=R-B:LOSUE 10900
1068 PRINT RiSGE: P "=";

Finally we jump back to line 20 to ask more questions.

149 GOTO 20

Dividing by zero!

Asitstands, the programcancrashif Bhappensto bezerowhenadivision
is selected. This can be simply fixed by always adding one on to B in this
case:

126 B=FHMRCDT 1+

Deleting decimals
We are usinginteger variablesto keep us to round numbers, but of course a

110

Chapter 9 An Intelige Teacher

division may still produce a fractional answer, eg:

To avoid producing decimals, A needsto bea multipleofB. To achieve this
we calculate B first and make A equal to B multiplied by a random number
between 0 and 10.

116 B=FHRCDT 2+1
126 A7INTCFHRE DT o v¥E

Keeping a score

Now that we have the test itself working. we need to consider how to keepa
score. The simplest thing is to increment a tries variable TR each time the
subroutineat 1000 is used, and to increment ascorevariable SC each time a
correct answer is obtained.

1619 THPUT IP:TR=TF+1

1020 1F CT=IP THEM:PRIMT "COPRECT
" SC=5C+1:GOTO 1940

1040 PRINT “vOLIR SCORE IS "iSC;"
2" TRRETURH

If you prefer the score as a percentage then amend line 1040 as follows:

1040 PRIMT "+QU HAVE HRD " INTCL
SC/TR #1083 "% CORFECT" :RETURM

How many questions?

As it stands the program will ask one question of each type in sequence, ad
infinitum. We can limit the number by defining the number of questions
NQ as a variable.

10 HD=22

Each time a question is asked, NQ is decreased by 1. and when NQ=0 the
test ends (after eight questions of each type have been answered).

130 IF NQ>A THEM 20

160 END
1018 IMPUT IP TR=TR+1:HO=NO-1

1t

Ariificial Ireelligence on the Dragon

Shifting the emphasis

If we are goingto bias the questionsif favour of areas of dif ficulty, then we
need to keep a record of performance in each individual area. We therefore
need separate variables for each type of question (AD for addition, SU for
subtraction, MU for multiplication, and DI for division). These variables
are defined in terms of one eighth of the total number of questions to be
asked NQ.

1A HE=22:A0=HD-,2 SLE=AD : 1M J=AC DI=
FIC

Now if the correct answer C is the same as your answer IP then an
increment variable IN is set to—1, CORRECT is printed,and the routine
returns. Otherwise IN is set to I, and WRONG is printed followed by the
correct answer.

1AZA 1IF C=IP THEW IM=-1:FRINT "C
ORREC PETURPH

1833 IM=1:PRIMNT "WPOMG. COPRECT
AHSKWER LAS ":C

1340 RETUPH

IN is added to the appropriate individual number of questions variable
AD, SU, MU or DI on returning, producing an increase in this value if the
answer was wrong, or a decrease if the answer was right

40 SG%="+": C=R+E: GOSUE 1008:AD=R
D+IH

7R SGH="-" C=A-E:GOSUE 18009 :Sl=S
LM

100 SCHE="X" C=A{E:GOSUE 126A: M=
MU+TH

126 SCh="":C=A/E GOSUE 1060:01=
DI+IM

Now we add to check to see whether all the questions of a particular type
have not been correctly answered (eg AD>0, see Flowchart 9.1). If all
questions of one type have been correctly answered, then no more of this
type will be asked as the line is jumped over. If the appropriate number of
each type has been answered correctly (AD=9, SU=0, MU=0, DI=0)
then the program ends.

48 IF AD>A THEM SG%="+":IZ=A+B:G0
SUR 1680 RD=AD+IH

n2

Chapter 9 An Inselligent Teacher

7R IF SR THEM SGH="-":C=A-B:G0
SUE 10909 : SU=SLI+IN

108 IF MiU>0 THEM SGE="#":C=RA¥B:G
OSUE 1800 : MU=MU+IN

130 IF DI>B THEHW SG%="-/":C=A/B:G
OSUB 1000:DI=01+1IN

143 IF AD=8 AND SL=A AND MU=0 AH
[DI=B THEN 1€0

INPUT INCREMENT
ANSWER TRIES

Flowchart 9.1 Intelligent Teacher

Notice that you are no longer asked questions about areas in which you
have correctly answered four questions without making any errors. If you
make a mistake then AD. ctc. will be increased and so you will have to
answer more than four correctly before AD reaches zero.

13

Ariificial Intelligence on the Dragon

Degrees of difficulty

How about making the questions easier or harder according to how well
you are doing (ie the values of AD, SU, MU, and DI)? So far the current
values for A and B havealways been between 0 and 9 as they were produced
by RND(0)*10. but we now need to bias the numbers produced for the
questions towards higher values. if youarecorrect,and lower values, if you
are incorrect. At the same time, we must ensure that you do not produce
negative values if your performance is abysmal.

The ‘worst case’ will be if you get all the questions right in three of the
groups, and all the questions wrong in the last group. In thiscase only four
questions will be asked on the first three groups, leaving 32—(3*4)=20
questions to beasked onthelastgroup. In addition wemustremember that
X (eg AD) starts at a value of 4, so that the maximum value of X which
could be obtained is 20+4=24

We therefore set up a weighting variable WT, which is calculated by
subtracting three times the number of questions to be asked in each group
(3*AD) from the total number of questions NQ and adding back on the
number of questions in a group AD at the start.

WT=NQ-(3*AD)+AD

This is more simply expressed as:

WT=NQ-(2*AD)

SLEAD MU=RG D=

We now replace the fixed value of ten by the difference betwen WT and X.

15 DEF FHRED Y isfMD0 8 ok T
To begin with, WT=24 and X=4 so numbers between 0 and 19 will be
selected. If a correct answer is given, then X will be reduced to 3 and
numbers between 0 and 20 will be chosen. After four correct answers. X will
not change (for this type of question) as it will have reached zero and the
line will be skipped. The last values will therefore be between 0 and 22.
On the other hand if the first answer is incorrect then X will increase by
and the range of numbers produced reduced by 1 (0—18). In the ‘worst case’
X will be increased twenty times to 24 and (WT—X) will fall to zero for both
A and B (so you should be able to solve that particular problem!).

114

CHAPTER 10
Putting It All Together

In the previous chapters we have dealt. from first principles, with various
aspects of Artificial Intelligence. In this final chapter we have linked
together many of these individual ideas in a single complete program.

The original ‘intelligent’ program was the famous ‘ELIZA’, which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy. We have resisted the temptation to follow this lead and
have opted instead to produce a replacement for the average computer
salesman. This program combines some ideas on the processing of natural
language and on expert systems. to produce a result which should both
understand your requests and make suggestions which take into account
both your requirements and a number of hard commercial facts.

Enough words and values have already been included to make the
program interesting, but you can easily customise it by adding your own
ideas to the DATA. (We take no responsibility for the values included so
far. which are for demonstration purposes only, or for the views on particu-
lar machines expressed by the program!) The program itself is quite
complex but it follows the methods described earlier in the book and
the functions of the various line variables and arrays are given in
Table 10.1.

Making conversation

The format of the program is thatyouare asked foryourviews on each of a
number of possible features in turn (the exact wording of the question
being selected at random from a selection of phrases). Note that the key
word or phrase is inserted into the sentence where necessary, and that the
correct conjugation is applied.

Your inputis examined in detail for keywords, and a rule array updated
according to your requests. (If you want actually to watch the rule array
being updated then delete line 549 0.) Many of the key words are truncated
so that one check can be made for a number of similar words. and a test is
included to see if the matching string is at the start of a word.

The simplest answer is ‘YES® or *“NO’, which adds or subtracts I from the
rule for that feature. If you mention the name of the feature (eg
'GRAPHICS’) then a further | is added to the rule. In addition, using a

115

Ariificial Intelligence on the Dragon

Table 10.1 Main Variables in ‘Salesman’

SIMPLE VARIABLES

QP no. of question sentences
Q no. of questions

R no. of rules

BB bank balance

PH phrase number

PH$ phrase words

M match marker

OF object flag

OM object match

LD like/dislike

FS rest of sentence pointer
NP negative pointer

SI AND match pointer
S2 BUT match pointer
RU rule update marker
OB no. of objects

AJ no. of adjectives

AV no. of adverbs

L1 no. of likes

DL no. of dislikes

NJ no. of negative adjectives

NV no. of negative adverbs

HM no. of cheap/expensive

ce no. of computers

FE no. of features

CcT no. of cost ratings

(&} no. of cost suggestions

EX no. of excuses

Hl no. of high price suggestions
LO no. of low price suggestions
TC total cost

TP total profit

e

ARRAYS

OB$(OB) objects

AJS(AJ) adjectives
NJS(NJ) negative addresses
AVS$(AV) adverbs

NVE(NV) negative adverbs

LIS(LI) likes

DL$(DL) dislikes

Q3(Q) question objects
QP$(QP) question sentences
CR(Q) cost rate

PR(Q) profit rate

1C(Q) total cost

IP(Q) total profit
HMS$(HM) cheap/expensive
R(R) rules

COS(FE) computer names
FE(CO,FE) feature names
C(CT) cost ratings
CS$(CS) cost suggestions
EXS$(EX) excuses

HI$(HI) high messages
LO$(LO) low messages

Chapter 10 Puuting It All Together

‘positive’ adjective or adverb adds to the rule, whilst a ‘negative’adjective or
adverb subtractsfrom the rule. Separating the words into different classes
allows you to make more than one change to the rule at the same time.

Thus:

YES

YES BASIC

YES BASIC NECESSARY

YES GOOD BASICNECESSARY

Whilst:

NO

NO MEMORY

adds one

addstwo

adds three

adds four

subtracts one

subtracts two

7

Arnficial Inielligence on the Dragon

Furthermore, verbs are grouped as ‘likes’ and ‘dislikes’, the last of which
reverses the action of the rest of the words.
Thus:

I DETEST MACRODRIVES subtracts one

Both ‘NO-' and ‘N'T" are recognised, and most double negatives are
interpreted correctly.

Thus:
I DON'T LIKE SOUND subtracts two
I DON'T DISLIKE SOUND adds one

If anything appears at the start of a sentence and is followed by a comma, it
is usually cut off and effectively ignored.
Thus:

NO, I DON'T WANT GOOD SOUND subtracts three

The exception is when ‘AND’ or ‘BUT are included, when both parts of the
sentence are acted on independently.
Thus if the question is:

DO YOU WANT GRAPHICS?
and the answer is:
NO, BUT I WANT GOOD SOUND

then one is subtracted from thegraphics ruleandtwois added to the sound
rule.

If the program does not find any keywords in the input, it politely asks
you to try again:

PARDON, EXCUSE ME BUT..

The program can only cope with one feature at a time, so if you try to ask
for*'SOUND and GRAPHICS’ at the same time, for example, you will get
a request for a repeat of the question

HANG ON - ONE THING AT A TIME

However, it is possible to make comments about single features that you
are not being asked about at the time, and these entries will still update the
rules (as in the ‘BUT" example above).

118

Chapter 10 Putiing It All Tugether

119

Arnifiaal Intelligence on the Dragon

120

Chapter 10 Puning It All Together

121

Arnficial Intelligence on the Dragon

{(4)
(¢

122

Chaprer 10 Prating It All Together

123

Aruificial Imelligence on the Dragon

Decisions

Inaddition to the rule array, there are two other arrays which are linked to
this. The first s the ‘cost array’, which gives anindication of the cost of this
particular option, and the second is the ‘profit array’ which indicates to the
salesman how much effort it is worth putting into selling this feature. The
values for these last two arrays are produced by multiplying the content of
the corresponding rule array element by factors entered originally as
DATA in lines 10100, etc, where the format is:

(phrase describing feature, cost, profit)

After each input, the salesman considers the consequences of your
requests. First of all he looks to see if the sum total of the cost of all your
requirements exceeds your bank balance. If so, he prints out one of a series
of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE EXCEEDING YOUR
CREDIT LIMIT

He also looks at howmuch profit he is likely to make on the sale sofar:
if this drops too low, he will start to lose interest and come up with
comments like:

I HAVE AN URGENT APPOINTMENT
or
WE CLOSE IN FIVE MINUTES

Atthesametime, hewillbemorehelpfulwithregardtowhichofthe
available computers will fit your requirements, drawing up a short-listby
comparing the rating given originally to this feature in the
description of each computer with the value you put on it. The format
for the descriptions is:

(name. value of feature I, value of feature 2, value of feature 3, etc)
The highest rated machine will always be picked out firstbut,if possible,at
least three machines (possibly with lower ratings) will be selected and the

final choice is made from these. Either the highest or lowest cost computer
(at random) will be selected for mention, for example:

IF YOU WANT A REAL ROLLS-ROYCE THEN JUST LOOK AT
THE..

124

Chapter 10 Pruting It All Together
and

IF YOU ARE IN THE BUDGET MARKET THEN WHAT ABOUT
THE...

1f only one machine fits the bill, the program will come up with:

YOUR ONLY OPTION IS THE...

Salesman

y T
+1 =1 PHE=OPSPH 1
. 5P THEM
THEM FH=L

rFIth#~PH1ulEM
4nm SP=INSTRC L PHS. "k

. IF S
O RIG

HT$ 3% rl bl
HE LENMCPHS
+RTGHT % 13
TBEE PRIMT (0
ER FRINT ® -
TR LIHE THPUT 5% TH%
208 Th%=" "+1ME
j 0y M= Of=0 £ 1=k)

CM=IHSTRO 1, THS, ", ") IF "H—yl

» PHYi:
Gt s PRIFT W 224

A o]

THEH 1500
100k S1=THSTRC 1, IHE, "AMHG" S
1190

7= INSTRCT, THE, "BUIT"
IF S1+52=0 THEM 1509
IF LEFT‘L\ THE, 2 0=

1613 SP=IHSTRCST, 1%, "YES")

125

Artificial Intelligence on the Dragon

1798 IF SP20 THEMW RU=RU+1:LD=1:1
=1 E5T=5P+1:GOTD 1666

1208 3P=IMSTRCST, TG, "Ni1")

199» IF 5P»8 THEM LD=-1:M=1:35T=S
P+1 :HP=NP+1:G0OTO 13200

2O SP=INSTRCST. IM%, "H' T")

21089 IF 5SP:g THEW Lb=-1:M=1 ST=5
P41 HP=HP+1:GOTO 2@06

B IF HP>® THEM IF IMTO HP-Z i=H
P2 THEHW FJ=RU+1:LD=1 ELSE RU=RL
-1:L.b=-1

=i T L1
SP=IMSTRC L. INR, LI%C Mot IF :
THEH IF MICS% IH%E, $P-1.,1 ="

P
THEN LD=Lbv1 14=1

2798 SP=INSTRY 1. IN®, DLFCH Y IF 5
PyH THEM IF MICEC TM% SP-1,10=" "
THEW LD=L0#-1:M=1

B HENT M

2995 FOR M=) TO OE

2080 SP=INSTRCL, IHS. DBS4): IF 5
PeH THEM IF MID% IHG,SP~1,1,

THEH RU=RLI+LL OF=H:M=1" 0M=0]
216 HENT H

JJPJ SP= INCTF"'I THE ANGIM 23 TF 5
=5 THEW 2500
:}453!-’! IF MID®:C THF, SF-1.1 02" " TH
EH ZiEan
2508 RU=RLULD: M=1
2608 HEXT W
"’Eiﬂ FDP M= TO HY
) =IHSTRO L THE MY SN0 IF 5
THEN 41860
F9gk) IF MIDSC IM%. SP—~1, 104" " TH
EH 4168
4900 LU=L0E-1: RU=RU+LE:M=1

H

4200 FIJF' H=g TO H.J
4390 SP=IMSTRC L, MR, AIB M3 IF 5
P=i) THEM 4560

4400 IF MIDE IHE, SF-1.1 37

=
x

126

Chaprer 10 Puting It All Together

EM 4imew)

4560 RU=RU+LD:M=1

46008 MEAT H

4708 FOP H=a TO H.J

4200 SP=INSTRC L, ING. MY M) 2 IF 3
F=0 THEH D16

4CM>J IF ML I SR=-10 1 0" PTHE

T Hk

SINGLHMSOH D IF 3
et THEM
FRIMT "CH

IRV

%A IF THEH PFRILIHT
E o PEH
G190 H

: H
5206 IF H’l THEHN FRINT @ 26,
P['L_OH FLERSE E-CLIZE ME BEUT" GOTD

"FATHEF

ov) IF Ol THEH PRIMT (2 226, "H
HHL[Illl”- OWE THIMG AT A TIME" GO

=1 |
FRi ‘H#U)
T HGIR)

==hl TU FFRINT @ M2
T f

o0 FOR He - 1rl FoPRIMT @ bz
CICEH D CHEMT M

KR FOR M= TO F:FPRIMT @ P20+

224 IPOHY HEWT M

5208 FUP N=@ TO ik

£260 MEST
w200 IF TF"IIL: THEH TigzzRHi) o

127

Artificial Inielligence on the Dragon

CPRINT FRINT i Ti
GARR TF TCVEE THEM PT=RHLG S 403
FRINT:FRINT CSSCFT o

S5HE TC-R TP

Fn**PIEHTE-°TF$(HJ 10:1=M
e HEXT M
7180 IF POf="" THEM HEXT ¥:GOTO
7200
‘119 IF LEMCPO% 23 THEM MEXT ¥
7290 CLS
7200 PRINT @ 9,"":
7316 H0TO790A
358 PRINT PO%
190 IF PO%="" THEW %2609
?SBB FOR MN=1 TO LEHIPO%)
TE00 PRIMT CO%CYRALCMIDHCPO®. M. 12
2
TTA HEXT N
79 PRINT
7200 T3=0:EpI=16
9Bl FOR CH=N TO LEH(PO%I-1
2108 HC=VAL MI0e PO®. CH+1. 130
S IF CCNC3»>=T3 THEW TS=C(NC):

HI=HC

3308 IF C(MC)I<{=ES THEW BS=C(MNC):

LO=HC

2498 HEXT CH

2419 IF HI=L0O THEHW PRIMT"YOUR OM

L% OPTIOM IS THE" FRIMT CO%CHI)>:

LUOTO 3209

12500 HIS=CO%HCHI »: LOE=CO®CLOD)
2hAA SE=PHDC2)

3702 SL=RHDC -1

300 IF SE=2 THEM 3100

2500 PRIMT HI®(SL ». ,HI%

S@pn GOTO 2206

9140 PRINT LOBISLY, .LO%

Q?B? O=04+1IF 0420 THEHW 20 ELSE
END

9300 OP=5: =19 p=0:0B=P:A.1=3:AV=
S I=2:0L=2:)= Hy=2:HM=2:DOIM 0

128

Chapier 10 Puiting It All Together

E%C DB b, AJRCAS D5 HIRCH. 3, AVECAY 5, N
VRCHY), LISCLT D, LB DL . PR O), RIP
D RPECRP Y, A FRC R, TC e, TP
2 HM HF
-'-M»J L-HTH

] . MEL EHTF‘UHII

AHE HETHORK ., 16-E1 1 MOLTITH

ERVICE

S50 DRTH GO0,

IFST.FAST EFF LI

6§ CATH AL ROE

FFII SFEM BORS. L

DATA PEAL . MERY 1

S TRL

4 [ATH HEYER ,HNHFI E‘v'sa IHFFEL
TH .

] IPEF‘ MAGHT
o7

+ WGRAP
o Foa GOOD FEYE
I.JI-UN TIOH FEVS. 1,5.%R L
CEe 9 THPE IHTEF’FHF
TVES . 2. W]
TWARPE . B, 2. %R rHP

] IH F'UPT 1.7,

K YOLI LTEE WHAT H
EOUT ., HOW AE DLH’. DO 0L BIRMT . DO 0
U PEOUIRE, ~% IMPOPTANMT

165218 DATA CHEAP. INEYPEMSTVE
1722 DATA DEARP. EXPEMSIVE
19463 FOR M= TO DE:PEAD DBHCH

HEXT H
1ASEA FOP H=a TO AL PERD AJBIH
HEMT H
1603603 FOP H=H TO W1 FERD HJ%(H >
HEXT M

129

Artificial Intelligence on the Dragon
FE FOR H=g TO AY RERD RYSECH o

M=k TO MY RERL HE/SECH

lwqu Fi P M= TOOLT:PERL LIEH
HEST H
Lifee FOR =8 TO UL PEAL DLSCH 2
HE®T M

i II«JH FLIE BV READ WECH 3L CR

) M= TOBRREAL GP%CH

OF M=) TO HM: PERL HIEC 3
=5y

T “IT 15 My PLERSLIFE T
WO TO THE MULTIMEGH M

TR PRIMTYWE AFE UMDOUBTECLY T
HE ULTIMATE SOUFCE OF ALL COMPUIT
EF PROCI AHL T SHALL HAYE GPE
AT PLEASLIRE IH HELFIHG w00 SELEC
T OUP HEW MACHIME"

116668 PPINT"S0 THAT 1 CAH WORE O
UT THE BEST COMPUTER FOR YOURP PR
FTICULAR HEEGS FERHAPS (0L L0
“E KNG EMOUGH T2 AMZLER A F
Ebl FAIESTIONE"

PI7ER PRIMT FRIMT"ARE <00 RERDNY

il@’ﬂ@ CO=3:FE=19: 0T=2: DM CO%CFE

Chapter 10 Putting It All Together

FEAG DO H
FOP 1= TO FE
Ev . M

3 REAL DOM Y
HET H
A%~ [HFE' T (F FAB="" THEH 1+

OGATA T THIHE 0L ARPE GETTI
OF WO FRICE FRHGE. THI:

2 TOPE E
EOTHG vl T ;
THIHE THAT YO LRH AEFORD

LCH LIIRIES

Ao DRTR EXCUSE ME T CAM HEARR
THE FHOME RPIMGIHG. T HAVE A LG
EHT AFFOIMTHMENT WE CLOZE TH FIVE

2o0IM T CE s DIM

OF b=l TO 05 READ 1

'EE

YT

3 FOR M=® T EX PEAD EXSIH
HEXT

14488 DATA TF Yol ARE M THE Bl
GET MARKET THEH WHAT AEDLIT TH
H O INEYFEHSIVE OICE IS THE. vl
GET G000 WALLE FOkR MOHEY WITH
THE

14500 OATA IF YOU WAMT Fi FIFST-C

131

Artificial Intelligence on the Dragon

LASS PROCLICT THEM (DL MET
TR T ~(iF OF THE ART TE
CHMOLL o & " EEAT THE. IF ¥
DL WRHT A ROLLS 'CE THEH JUET
LONK. AT THE

1 3 HI=2 L0=2: DIM HIGHT o, LO%C
LO>

14703 FOR t=8 T0 L0 REAL LO%0 M-
HEXT +

145600 FOR M=) TO HIPERD HIKOM -
HEXT H

1450 CLS:RPETURM

Commentary

Lines200-440: Pick the words to be used in the next question, and selectthe
correct conjugation.

Lines 500-800: Set up your INPUT and reset variables.

Line 900: Checks for a comma.

Lines 1000-1200: Check for ‘AND" and ‘BUT'. If neither of these is present
the program jumps to line 1500.

Line 1300: Updates the current rule negatively if ‘AND’ or ‘BUT’ are
present and the first word is ‘“NO"

Line 1400: Updates thecurrentrule positively if AND’ or'BUT' are present
and the first word is not ‘NO".

Line 1500: Deletes anything preceding a comma.

Lines 1600-2100: Check for ‘YES’, *NO" and ‘NT" and update the current
rule accordingly.

Line 2200: Checks for a double negative.
Lines 2300 2500: Check for ‘likes’.
Lines 2600-2800: Check for "dislikes’.

Lines 2900 5100: Similarly check for objects, adjectives and adverbs.

132

Chapter 18 Punting It All Together

Lines 5110-5190: Check matches for high and low cost key words.
Line 5200: Checks for no match and reports.
Line 5300: Checks for more than one object.

Line 5400: Updates the current rule, or another rule, accordingto whether
or not the object matches the current question.

Line 5490: Jumps over the print-out of the rules.

Lines 5500-5800: Print out the rules.

Lines 5900-6200: Update the total cost and total profit values.

Line 6300: Prints an excuse if the profit seems too low.

Line 6400: Prints a warning if the spending is too high.

Line 6500: Zeros the total cost and profit values.

Lines 6700-7120: Search for computers which match your requirements.
Line 7310: Jumps over the print-out of matching machines.

Lines 7350 -7800: Print out the matches.

Lines 7900-8400: Pick the highest and lowest priced machines whichmatch
the specification.

Line 8140: Checks if only one machine was selected.

Lines 8500-9100: Print out the name of either the highest or lowest priced
machine.

Line 9200: Updates the feature to be checked and returns for anotherinput.

Lines 9300-11300: Enter the information on features, keywords, costs and
profits.

Lines 11400-11700: Provide an introduction.

Lines 11800-13800: Enter the information on the names and virtues of
particular machines.

Ariificial Intelligence on the Dragon
Lines 13900-14300: Provide warnings and excuses.

Lines 14400-14900: Contain the words for high and low cost messages.

The rest is up to you

Artificial Intelligence is a fascinating subject, and we trust that we have
given you enough information to get you started on your own experiments
in this area. We have certainly enjoyed making our own explorations whilst
putting this book together, but we have started to wonder how long it
will be before someone designs an expert system program which writes
books .

134

Other titles from Sunshine

SPECTRUM BOOKS

Spectrum Adventures

A guide to playing and writing adventures
Tony Bridge & Roy Carnell

1SBN 0 946408 07 6

ZX Spectrum Astronomy

Maurice Gavin

ISBN 0 946408 24 6

Spectrum Machine Code Applications
David Laine

1SBN 0 946408 17 3

The Working Spectrum

David Lawrence

ISBN 0 946408 00 9

Master your ZX Microdrive
Andrew Pennell

ISBN 0 946408 19 X

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon
Keith & Steven Brain

I1SBN 0 946408 06 8

Dragon 32 Games Master
Keith & Steven Brain

1S8N 0946408 03 3

The Working Dragon
David Lawrence

ISBN 0 946408 01 7

The Dragon Trainer

A handbook for beginners
Brian Lloyd

ISBN 0 946408 09 2

£5.95

£6.95

£6.95

£5.95

£6.95

£5.95

£5.95

£5.95

£5.95

Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minutc details of the latest games. Other featuresin the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventurc corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 35p a week,
a year’s subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's
subscription (12 issues) costs £10.00 in the UK and £16.00 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year’s subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year’s subscription costs £10 in the UK
and £16 overseas,

For further information contact:
Sunshine

12-13 Little Newport Street
London WC2R 31.D

01-437 4343

136

Artificial Intelligence on the Dragon computer shows
you how to implement Al routines on your home micro
and turn it into an intelligent machine which can hold
a conversation with you, give you rational advice,
learn from you (and teach you) and even write
programs for you.

The book explains Al from first principles and
assumes no previous knowledge of the subject. All
the important aspects of Al are covered and are fully
illustrated with example programs.

For many years science fiction books and films have
contained ‘intelli?eni’ computers which appear to be
at least the equal of man. Although some of the
features described in these remain illusions,
extensive research into Al has brought many of the
ideas much nearer reality.

Keith and Steven Brain are a father and son team and
have already published the best selling Dragon 32
Games Master and Advanced Sound and Graphics for
the Dragon computer. They are both regular
contributors to Popular Computing Weekly.

£6.95 net

ISBN 0 946408 33 5

NOSOVIA NO IONIDITIAINI VIOHILYY NIVAF NIAILS 8 HLIII

	1
	lc-n001
	lc-n002
	lc-n003
	lc-n005
	lc-n006
	lc-n007
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	z

