

artificial intelligence
on the dragon computer
make your micro think

keith and steven brain

First published 1984 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street.
London WC2R 3LD

Copyright © Keith and Steven Brain. 1984

All ri;:h1s resen•ed. /1/u pan ,�(1his publicmion may he reproduced,
stored in a renit'1·al sy.Hem. or 1ransmilled in any form or hy ml_l' means.
eleclronic. 111echa11ical, pho1ocop_rin;:, l'l'Cording and/or othenn\t'. 1d1h­
out 1/ie prior ll'l'ille11 permission 0(1!,,, Puhlishers.

British Uhrar_r C(J[a/vguing in Puhlicalion Data
Brain. Keith

Artificial intelligence on 1he Dragon Compu1er
I. Artificial intelligence Data processing
2. Dragon 32 (Computer)
I. Title I I. Brain. Steven
00l.53'0285404 0336

ISBN 0-946408-33-5

Cover design by Graphic Design Ltd.
Illustration by Stuart Hughes.
Typeset by V & M Graphics Ltd. Aylesbury. Bucks.
Prin1cd in England by Short Run Press Lid. Exeter.

CONTENTS

Introduction

I Artificial Intelligence

2 Just Following Orders

3 Understanding Natural Language

4 Making Reply

5 Expert Systems

Page

Vil

5

21

37

55

6 Making Your Expert System Learn for Itself 71

7 Fuzzy Matching 85

8 Recognising Shapes 97

9 An Intelligent Teacher 109

10 Putting It All Together I 15

1

iii

Contents in detail

CHAPTER I
Artificial Intelligence
Fantasy - reality: two-way conversations. robots, expert systems.

CHAPTER 2
Just Following Orders
Preset orders and fixed responses - DATA arrays - expanding the
vocabulary - removing redundancy - abbreviated commands - partial
matching - sequential commands.

CHAPTER 3

Understanding Natural Language
Dealing with sentences - subjects. objects. verbs. adjectives. adverbs -
punctuation - a sliding search - rearranging the word store array.

CHAPTER 4
Making Reply
Gening more sensible replies- making logical decisions before replying­
choosing the corrcc1 subject - problems with objects - changing tense.

CHAPTER 5
Expert Systems
How an expert works - simple problems - more difficult problems -
including pointers - sequential and parallel branching - checking how
well the answers match the data - better in bits.

CHAPTER 6
Making Your Expert System Learn for Itself
Letting the computer work out its own rules for two objects - a wider
spectrum - watching what happens.

v

Ariificia! !nit!!igenu on the Dragon

CHAPTER 7

Fuzzy Matching
Recovering information from the human mind - Soundex Coding - a
computer program for converting names - retrieving information.

CHAPTER 8

Recognising Shapes

Simulating the action of a light sensor - inserting inlo sentences - a
branching short cut.

CHAPTER 9
An Intelligent Teacher
Questions and answers - keeping a score - shifting 1he emphasis of
questions to areas of difficulty - making questions easier or harder.

CHAPTER 10

Putting It All Together
Making conversation with the computer - making decisions. cost arrays
and profit arrays - the Computer Salesman.

vi

Introduction

Artificial Intelligence is undoubtedly an increasingly important area in
computer development which will have profound effects on all our lives in
the next few decades. The main aim of this book is to introduce the reader
to some of the concepts involved in Artificial Intelligence and to show them
how to develop 'intelligent' routines in BASIC which they can then
incorporate into their own particular programs. Only a superficial
knowledge of BASIC is assumed, and the book works from first principles
as we believe that this is essential if you are really to understand the
problems involved in producing intelligence. and how to set about
overcoming them.

The basic format of the book is that ideas are taken and suitable routines
built up step by step, exploring and comparing alternative possibilities
wherever feasible. Rather than simply giving you a series of completed
programs, we encourage you to experiment with different approaches to let
you see the results for yourself. Detailed nowchans of most of the routines
are included. The main emphasis in the routines is placed on the AI aspects
and we have therefore avoided 'tarting up' the screen display as this tends to
obscure the significance of the program. In places you may notice tha! odd
lines are redundant. but these have been deliberately included in the
interests of clarity of program now. As far as possible, retyping of lines is
strenuously avoided but modification of lines is commonplace. All listings
in the book are formatted so that they appear as you will sec !hem on the
screen. In most cases. spaces and brackets have been used liberally to make
listings easier to read but be warned that some spaces and brackets are
essential so do not be tempted to remove them all. All routines have been
rigorously tested and the listings have been checked very thoroughly so we
hope that you will not find any bugs. ii is a sad fact of life that most bugs
arise as a result of 'tryping mitsakes' by the user. Semi�colons and commas
may look very insignificant but their absence can have very profound
effects!

Artificial Intelligence is increasing in imponance every day and we hope
that this book will give you a useful insight into the area. Who knows - if
you really work at the subject you might be able to persuade your machine
to read our next book for itself!

Keith and Steven Brain
Groeswen, January 1984

vii

CHAPTER I

Artificial Intelligence

Fantasy
For generations. science fiction writers have envisaged the development of
intelligent machines which could carry ou1 many of 1he functions of man
himself (or even surpass him in some areas), and the public image of
Artificial Intelligence has undoubtedly been coloured by these images. The
most common view of a robot is that it is an intelligent machine of generally
anthropomorphic (human) form which is capable of independently
carrying out instructions which are given to it in only a very general
manner.

Of course, most people have ingrained Luddite tendencies when it comes
to technology so in the early stories these robots tended to have a very bad
press, being cast in the traditional role of the 'bad guys' but with near­
invincibility and lack of conscience built in. The far-sighted Isaac Asimov
wove a lengthy series of stories around his concept of 'positronic robots'
and was probably the first author really to get to grips with the realities of
the situation. He laid down his famous 'Three Laws of Robotics· which
specified the basic ground rules which must be built into any machine
which is capable of independent action -but it is interesting to note that he
could not foresee the time when the human race would accept the presence
of such robots on the earth itself.

'Star Wars' introduced the specialised robots R2D2 and CJPO, but we
feel that many of their design features were a little strange. Perhaps there is
an Interplanetary Union of Robots. and a demarcation dispute prevented
direct communication between humans and R2D2. In 'The Stepford
Wives', the local husbands got together and had the (good?) idea of
converting their wives into androids who automatically did exactly what
was expected of them, but the sequel revealed the dangers of the necessity
to continuously reinforce wi1h an external stimulus! Perhaps one hope for
mankind is that any aliens who chance upon us will not have watched
'Battlestar Galactica·, and will therefore build robots of the Cylon type
who, rather like the old Space Invaders, are always eventually defeated
because they are totally predictable.

Of course intelligent computers also appear in boxes without arms and
legs, although nashing lights seem obligatory. Input/output must
obviously be vocal but the old metallic voice has clearly gone out of fashion

1

Artificial /ntelli1,rnce on 1he Dra!(OI!

i"n favour of some more definite personality. If all the boxes look the same
then this must be a good idea. but please don't make yours all sound like
Sergeant-Major Zero from 'Terrahawks'! Michael Knight's KITT sounds
like a reasonable sort of machine to converse with, and it is certainly
preferable to the oily SLAVE and obnoxious ORAC from 'Blake's Seven'.
ORAC seemed to pack an enormous amount of scorn into tha1 little
perspex box. but other writers have appreciated the difficulties which may
be produced if you make the personality of the machine too close to that of
man himself.

In Arthur C. Clarke's '2001: A Space Odyssey·. the ultimately-intelligent
computer HAL eventually had a nervous breakdown when he faced too
many responsibilities; but in 'Dark Star' the intelligent bomb was quite
happy to discuss Existentialism with Captain Doolittle but was unwilling
to deviate from his planned detonation time. although still stuck in the
bomb bay. In 'The Restaurant At The End of The Universe', the value of
the Sirius Cybernetics Corporation Happy Vertical People Transporter
was reduced significantly when it refused to go up as it could see into the
future and realised that if it did so it was likely to get zapped; and the Nutri­
Matic Drinks Synthesiser was obviously designed by British Rail Catering
as it always produced a drink that was 'almost. but not quite. entirely unlike
tea·.

More worrying themes have also recently appeared. The most significant
feature of 'Wargames' was not that someone tapped into JOSHUA (the US
Defence Computer), but that once the machine started playing
thermonuclear war it wouldn't stop until someone had won the game. And
in 'The Forbin Project' the US and Russian computers got together and
decided that humans are pretty irrelevant anyway. Of course, if you are
Marvin the Paranoid Android and have a brain the size of a planet and a
Genuine People Personali1y. you can succeed without weapons by
confusing the enemy machine into shooting the floor from under itself
whilst discussing your personal problems.

Reality
The definition and recognition of machine intelligence is the subject of fast
and furious debate amongst the experts in the subject. The most generally­
accepted definition is that first proposed by Alan Turing way back in the
late 1940s when computers were the size of houses and even rarer than a
slide-rule is today. Rather than trying to lay down a series of criteria which
must be satisfied, he took a much broader view of the problem. He
reasoned that most human beings accept that most other human beings are
intelligent and that therefore if a man cannot determine whether he is
dealing with another man (or woman), or only with a computer. then he
must accept that such a machine is intelligent. This forms the basis of the

2

Chapter I Artifidal lmt'lli,:1•11ce

famous 'Turing Test', in which an operator has to hold a two-way
conversation with another entity via a keyboard and try to get the other
party to reveal whether it is actually a machine or just another human being
- very awkward!

Many fictional stories circulate about this test, but our favourite is the
one where a job applicant is set down in front of a keyboard and left to
carry on by himself. Of course he realises the importance of this test to his
career prospects and so he struggles valiantly to find the secret, apparently
without success. However after some time the interviewer returns. shakes
him by the hand. and congratulates him with the words 'Well done. old
man, the machine couldn't tell if you were human so you are just what we
need as one of Her Majesty's Tax Inspectors!'

Everyone has seen from TV advertisements that the use of computer­
aided design techniques is now very common, and that industrial robots are
almost the sole inhabitants of car production lines (leading 10 the car
window sticker which claims 'Designed by a computer, built by a robot,
and driven by an idiot'). In fact. most of these industrial robots are really of
minimal intelligence as they simply follow a pre-defined pathway without
making very much in the way of actual decisions. Even the impressive
paint-spraying robot which faithfully follows the pattern it learns when a
human operator manually moves its arm cannot learn to deal with a new
object without further human intervention.

On the other hand, the coming generation of robots have more­
sophisticated sensors and software. which allow them to determine the
shape, colour, and texture of objects, and to make more rational decisions.
Anyone who has seen reports of the legendary 'Micromousc' contests,
where definitely non-furry electric vermin scurry independently and
purposefully (?) to 1he centre of a maze, will not be aMAZEd by our faith in
the future of the intelligent robot, although there seems li1tle point in giving
it two arms and two legs.

Another important area where Artificial Intelligence is currently being
exploited is in the field of expert systems, many of which can do as well (or
even better) than human experts, especially if you are thinking about
weather forecasting. These systems can be experts on any number of things
but, in particular, they are of increasing importance in medical diagnosis
and treatment - although the medical profession doesn't have to worry
too much as there will always be a place for them since 'computers can't
cuddle'

A major barrier to the wider use of computers is the ignorance and pig­
headedness of the users, who will only read the instructions as a last resort,
and who expect the machine to be able to understand all their little
pecularities. Processing of ·natural language' is therefore a major grow1h
area and the •fifth generation' of computers will be much more user­
friendly.

3

Anificial lnrdligenc, on tht Dragon

Most of the serious work on Artificial Intelligence uses more suitable
(but exotic) languages than BASIC, such as LISP and PROLOG, which
are pretty unintelligible to the average user and are probably not available
for your home micro in any case. The BASIC routines which follow cannot
therefore be expected to give you the key to world domination, although
they should give you a reasonable appreciation of the possibilities and
problems which Artificial Intelligence brings.

4

CHAPTER 2

Just Following Orders

As your computer is actually totally unintelligent, you can only converse
with it in very simple terms. The first step, used in many simple adventure
games, is to have a series of preset orders to which there are fixed responses.
Let's start by taking a look at giving compass directions for which way to
move. At first sight, the simplest way to program this appears to be to ask
for an INPUT from the user and to write a separate IF-THEN line for each
possibility (see Flowchart 2.1).

180 F"R IHT "DIRECTI OI-F " ;
1:'.;)0 I HRLJT IN$
?.00 IF Hl'li�"HDRTH " THEN PR ! tff "N
ORTH"
2 1 13 !F l f!'f;·s '' SDUTH" THEH F'R lt !T " S
OIJTH"
??iJ IF Hl'J;"' " v!EST " THEH PRINT "HE
ST"
2313 ! F JtN,·· "EFiST" THEN PRH!T "EA
sr1,
:'.:50

Flowchart 2.1 Gi,·ing Compass Directions

5

Artificial fmeffigence 011 the Dragun

If you type in anything other than the four key command words, nothing
wilt be printed except for another input request. It would be more user­
friendly if the computer indicated more clearly that this command was not
valid. You could do that by including a test which shows that none of the
command words has been found, but this becomes very long-winded, and
effectively impossible when you have a lo,ng list of valid words.

'.?40 IF Hl'li<'. > " HORTH" ANl) Hl'IV >"SO
U1H" AND I N'li < > " �IEST" AND Hl$O "E
FtST " mm PR I HT " IN\/AL IC, REQUEST "

On the other hand, adding GOTO 100 to the end of each IF-THEN line will
force a direct jump back to the INPUT when a valid command is detected.
If all the IF tests are not true then the program falls through to line 240
which prints a warning. Making direct jumps back when a valid word is
found is a good idea anyway, as it saves the system making unnecessary tests
when the answer has already been found (see Flowchart 2.2).

Flowchart 2.2 Deleting Unnecl'SS!lf)' Tests

20f.l I F I f l'l;� " fllJRTH" mm PRJ HT- " fl
nRm " mm 100

6

Chapur 1 Just Fo/loM·ing Orders

21P.1 I F IN'li="SOUTH" THEH PRl tH " S
OUTH" • GOT(] 1 08
:�2>l IF IH'li= " WEST " THEH PRINT " WE
ST " • GOTO 1 00
:?30 I F I N'l/="EAST " THEH P� INT "EA
ST" , GOTO Hl8
2•11'l PR I NT " IH\IALID REQUEST"

That will echo the command given on the screen but of course i t does not

actually DO anything. As a model to work with, we will start at a position

defined as X=O and Y=O and indicate movements as plus and minus in

relation to this point. Notice that integer variables are used wherever

possible, as they are processed faster than real numbers, and this also

removes the possibility of clashing with reserved variables.

We now need to add the real response to the command, as well as the

message indicating that it has been understood (see Flowchart 2.3).

?.1'10 I F IN'li" " HOPTH" THEN PPIMT " t·I
ORTH" '/=Y-1 • c;oTfJ 1 80
2 Hl I F I H'li="SOUTH" THEH PRINT " S
OI..ITH" • 'i'=Y+ 1 • c;oro !fl0
220 IF I N'li="WEST" THEH PR I NT "IIE
ST " • XrX-l • GOTO 1 013
?30 I F I H'll= " ERST " THEN PRHH " ER
ST" • X=X+ 1 GOTO 1 013

That modification actually shows your position appropriately, relative to
the origin. So that you can see what is happening, and where you are, add a

printout of your current position:

1 1 0 PRINT " X·" ; X , " Y" ; Y

Using subroutines
Of course, that was a very simple example and. particularly where the

results of your actions are more complicated. it is usually better to put the

responses into subroutines.

:.eP.Y IF Jfl'li= "HORTH" THHl GOSUB 21!1
i:m , mm 1 00

7

1 0 X = 0 : Y = 0

Artificial lmeffigence on the Dragon

2 1 0 IF I N'""SOUTH" THEN GOSIJB 2 1
00 • GOTO 1 013
220 I F !Ntl="WEST" THEN GOSLIB 220
0 • GOTO 1 00
2313 IF IN'll"" EF!ST" THEN GOSLIB 230
0 • GOTO H l0

20130 PRI NT " GO ING NORTH" , '(=Y- 1. , R
ETIJRN
2100 PRI NT 11 GOIHG SOUTH" , y,,y+ l • R
ETIJRH
2200 PRH/T " GOH/G WEST" • X=X-1 • RE
TURN
23013 PRIHT " GOIHG EAST" , X.,X+I , RE
TIJRH

Flowchart 2.3 Adding a Response

8

Chapter 1 Just Foflowing Orders

More versatility
You could extend this use of I F -THEN tests ad infinitum (or rather ad
memoriam finitum!), but it is really a rather crude way of doing things
which creates problems when you want to make your programs more
sophisticated. A more versatile way to deal with command words and
responses is to enter them as DAT A and then store them in string arrays.
First you must DIMension arrays of suitable length for command words
(C$) and responses (R$). As variable-length strings are allowed (up to 255
characters) the actual text can be of almost any length.

30 [)I f1 Ct(3), R,(3)

If you put the commands and responses in pairs in the DATA statement,
then it is more difficult to get them jumbled up and easier to read them in
turn into the equivalent element in each array (see Table 2.1).

1 0000 ()RTA NORTH, GOmG NORTH., StJU
TH ., GOING SOUTH, �/EST ., GOHlG HEST , E
AST ' Gome EAST
1 1 1300 FOP tl"'P.I TO :3
1 10 10 READ C$C N J , P$(N)
1 1 020 NEXT H

ELEMENT COMMAND
NUMBER WORD C$(n)

NORTH

SOUTH

WEST

EAST

RESPONSE
R$(n)

GOING NORTH

GOING SOUTH

GOING WEST

GOING EAST

Table 2.1 Conlent of Command and Response Arrays

To initialise the arrays (fill them with your words). when you RUN add a
GOSUB and RETURN.

40 GOSIJB 1 0000
1 lfJ3!'1 PETl JPH

9

1

2

3

4

__

Artificial Jnu,/ligem·e un 1h1• Druion

All those IF-T HEN tests can now be replaced by a single loop which
compares your INPUT with each element of the array containing the
command words (C$) in turn (see Flowchart 2.4). Lines 2 00-22 0 need to be
replaced by the following lines but notice also that line 2 30 must be deleted.

2130 FOP M=0 TO 3
2 1 0 I F I H'S"C'S C N l THEN PRIHT R!fl(N
> , GOTO 1 00
220 HE"'.T H

t-'lowchart 2.4 More Versatility

Now, IF your input, IN$, corresponds to any of the command words, the
program jumps out of the loop after printing the appropriate response,
R$(N).

Of course we are now back in our original position of actually doing
nothing, so we need to be able to call those action subroutines. First of all

10

Chapter 2 Just Following Orders

let's arrange to jump out of the loop, if a match is found, toa new routine at
line 3 00.

2 1 0 IF ?Nit;=C$(N J THEH PRI NT R$nl
) , GOTO 300

We still have a pointer to indicate which word matched the input, as N (the
number of array elements checked) holds this value. We can use this in an
ON-GOSUB line to move to appropriate routines which are similar to the
ones we wrote earlier, except that there is no need to define the particular
message: this has already been printed as R$(N).

301'1 ot-1 U!+ 1) GOSU8 2000 , 2 !0B ., 220
0, :?300 ' GOTO I M
:?000 'l�Y- 1 , PETURN
:? 1 00 Y=Y+· l , RETURN
2200 f(=X- 1 , RETURN
'./300)<�>(+ 1 , RETURN

Expanding the vocabulary
The arrays can easily be expanded to contain more words. It would be
better if we defined the number of words as a variable WO, which we
would then use to DIMension the arrays and for both the filling and
scanning loops. This produces a general routine which is easily modified.

20 WD"2
30 DIM C$WD) , RtO IC•)
Wl:l FOR N"0 TO �lr>
1 1 000 F� N=0 TO WD

For example we can add intermediate compass directions which change
both X and Y axes.

211 W[l•=?

1 0010 C,ATR HORTH ERST, GOIHC NORT
H ER!!T, SOIJTH ERST , GO ING SOUTH ER
ST ; SOUTH �JEST, GOI NG SOUTH WEST, N
Oll'TH WEST , GOING NORTH WEST

and add some more subroutines:

300 OH (N+ 1) GOSUB 2000, l ll'l0 , 220
0, l300, 2400, 2:,00, 2601:1 ., 2700 , GOTO 1 00

I I

Artificial lnulligrnre on the Dragon

241!!@1 'i'"Y- 1 • Xr.X+1 • RETURN
2500 'f=Y+ 1 • X=X+1 • RET!JRN
2600 'fi'iY+ 1 • X:X- 1 • RETURN
27"'0 'f"''f-1 i X•X-1 • RETURN

Removing redundancy
All the responses so far have included the word 'GOING' and this word has
actually been typed into each DATA statement. Now typing practice is
very good for the soul but it would be much more sensible to define this
common word as a string variable. Notice that a space is included at the end
to space it from the following word.

10100 t;'li""GOIHr:; "

You can then delete all occurrences of this word in the DATA and combine
G$ with each key word in the response instead.

210 IF !Ht=Ct< fO THEN PRINT G!Ji; R
'I(N) , GOTO 300
10000 DRTR NORTH, NORTH, SOIJTH, SOU
TH, �JEST , �JEST, EAST., ERST
10010 DATA NORTH ERST, N0"1H ERST
, SOUTH EAST , SOUTH EAST, SOIJTH WES
T , SOUTH �JEST, NORTH WEST, NORTH WE
ST

Now that is starting to look rather silly as both arrays now contain exactly
the same words, so why not get rid of the response array, R$, and simply
print C$(N)? Well, in this case you could do that without any problem, but
of course where the responses are not simply a repetition of the input (as is
very often the case) the second array is essential.

If you look hard at all those subroutines you will realise that they all do
only one thing - update the values of X and Y. Now we could include
that information in the original DATA and get rid of them altogether! We
need to add two more arrays to hold the X and Y coordinates, add the
appropriate values into the DATA lines after each response, and READ in
this information in blocks of four (INPUT, RESPONSE, X-MOVE,
Y-MOVE-see Table 2.2).

30 Drn Ct(WD), Rt(WD), X(WD), Y(wc n
1 0000 ORTA N°"TH, NORTH ,0 , - 1 , SOUT
H, SOUTH, 0, 1 , WEST, WEST., - 1 , 0, ERST,
ERST , 1 , 0

12

Chaplt'r l Jusl Following Orders

1 00 I 0 DATA HORTH EAST, HOIHH EAST
, ! , - ! , SOUTH EAST , SOUTH !AST, ! , ! ,
SOUTH WES T , SOUTH �IEST, - 1 , L HORTH

WEST, HORTH WEST , - 1 , -t
1 ! 0 !el PEAD C'IUD , Rl< N) , X(N) , YOO

ELEMENT COMMAND RESPONSE
NUMBER WORD RS(n) X-MOVE Y-MOVE

C$(n) X(n) Y(n)

NORTH NORTH -1

SOUTH SOUTH

WEST WEST - J

4 EAST EAST

NORTH-EAST NORTH-EAST - I

SOUTH-EAST SOUTH-EAST

SOUTH-WEST SOUTH-WEST - I

NORTH-WEST NORTH-WEST -I -I

Table 2.2 X and Y Mons lncorporUt'd in10 Arrays

Now we can delete lines 3 00 to 2700 and modify line 2 1 0 so that X and Y
are updated here (see Flowchart 2.5).

2 1 0 IF I Nl.,Cl< N) THEN P9INT GSi R
I(H) ' X"X·H« H) , y,.y+y(H) • GOTO 1 00

This overall pattern of putting all the information into a series of linked
arrays is a very common feature which is used in several of the later
programs in this book.

13

__

1

2

3

5

0

0 1

0

01

1

1 1

1

6

7

8

Artificial JntelliKMCe on rhe Dragon

Flowchart 2.5 Using Unkrd Arrays

Abbreviated commands
So far we have always used complete words as commands, but that means
that you have to do a lot of typing to give the machine your instructions. If
you are feeling lazy you might think of changing the command words to the
first letter of the words only, and then INPUT a single letter. However,
unless you start using random letters that will only work as long as no two
words start with the same letter! To code all the eight compass directions
used above, we will have to use up to two letters: N, NE, E. SE, S, SW, W,
NW.

!11JP.ll!ll1l DFITR N; �IORTH, 0 , - L S , SOUTH,
0, L W , WEST, -1 ,eJ , E , EAST, 1 , 0
10010 QRTR NE, NORTH ERST, 1 , -1 , SE
, SOUTH ERST, 1 , 1 , SW, SOUTH WEST, - !
, l , NW, HORTH WEST, - t , - t

14

Chaprrr } Jwr Followin,: Orders

Notice that it is only the actual command words which have changed and
that the computer gives a full description of the direction, as we are still
using that second array which holds the response.

Partial matching
In all the programs above we have always checked that the input matched a
word in the command array exac1fr. However, it would be useful if we
could allow a number of similar words to be acceptable as meaning the
same thing. For example, you could check whether the first letter of the
input word matched the abbreviated keyword by only comparing the first
character (taking LEFT$(1N$,I)).

I 90 I Nl,.LEFTI(! NI , I)

That will work with NORTH, SOUTH. EAST and WEST, but there are
obvious problems in dealing with the intermediate positions. In addition
there are lots of words beginning with the letters N, S, E and W - all of
which would be equally acceptable to the machine as a valid direction.

For example:

NOT NORTH

would produce:

GOING NORTH

A more selective process is to match a number of letters instead of just one.
In this example the first three letters of the four main directions are quite
characteristic.

NOR
sou
EAS
WES

If you use these as command words, then, for example:

NOR
NORTH
NORT HERN

and NORT HERLY

will al l be equally acceptable, but:

1 5

Arrifkial lmelligence on 1hr Dragon

NOT

NEARLY

NOWHERE

and NONSENSE

will all be rejected.
All we need to do is to take the first three letters of the input,

LEFT$(1N$.3), and compare them with a revised DATA list. Line JOOIO
can be deleted and the word number variable WD must then be amended
to 4.

20 �ir,,,3
1 90 I H'li=LEFTI(Hit , '.!,
1 0C!le0 DATR NOP., !·/ORTH , 0 , -1 , SOU, SO
LJTH, 0 , L WES , WEST, - 1 , 0 , ERS, ERST, I
, 111

Sequential commands
In the routines above we have dealt with the intermediate compass
positions as separate entities, but if we could give a sequence of commands
at the same time we would not need to do this. There is always more than
one way to get to any point, and if more than one command word could be
understood at the same time we would not have to worry about checking
for directions such as 'NORT H EAST' as they could be dealt with by the
combination of 'NORTH' and ' EAST'.

This brings us to the very significant question of how to split an input
into words. First you must ask yourself how you recognise that a series of
characters make up a separate word. The answer, of course, is that you see a
SPACE between them. Now if we look for spaces we can break the input
into separate words which we can look at individually. The easiest way to
look for spaces is with 1he INSTR command which searches the whole of a
designated search string for a match with a second target string.

For example. line 130 will check whether the first character in IN$ is a
space. If it is not a space then it will automatically continue checking until
the end of IN$ is reached. If no space is found in the whole of IN$ 1hen SP
will be zero. I f a space is found then the value of S P will be the number of
characters along IN$ that the space is located (see Flowchart 2.6).

1 30 SP"! NSTR< t , I N!II., " ")
140 PR I NT SP • GOTO 1 00

1 6

Chapter 1 Jus1 Following Orders

Flowch1rl 2.6 Locating the Position of I Space

Try this out with:

NOR WES

SP 4

NORTH WEST

SP 6

NOR NOR WEST

SP 4

Notice that the length of the word is accounted for by SP but that only the
first space is found. To find all the spaces we are goi.ng to have to work
harder. First delete that temporary line 140.

Let's look at the input logically from the start (lefthand side). We will
replace the LEFT$(1N$,3) with MID$(1N$,ST,3) so that we can look at
any three-letter combination in the whole of IN$. To make it more sensible
we will call the result of this W$ as it shows the position of a word. To start
with we must set the search start position ST equal to one and add a space
to the front of IN$ so that the first word is also found (see Flowchart 2.7).

125 ST"l , IHI= " " + INS
130 SP"INSTR< ST, I NI, " " >
1 90 �JS=MlDIOHl , ST , 3)
2 11'! I F �1, .. c,r n) THEfl PRINT Gl ; RS
(H) , X-=X+X(H) ,vo:v+Y(H) , GOTO l i.'10

17

Arti_fkiaf lmelfil{e111·e Of/ the Draxo"

If you run this as it stands then you will still only find the first word as we
have GOTO 100 on the end of line 210. However simply sending the
program back to the INSTR check in line 130 instead does not help either,
as it will always start checking from the beginning of IN$ and will always
find the same first space. Once we have found this first space we need to

Flowchar1 Z.7 Searching for a K,prnrd

move the start position ST for the next search on to the character after
that space, SP+ I. When no more spaces can be found then the end of the
input has been reached and we can GOTO 100 again.

1 40 IF SP>0 THEH ST=SP+l , GOTO 19
0
HIE! GOTO 100
2 10 IF WfnCf(H , THEH PRIHT Gti R$
(H) ' !':•X+X(H) "f=Y+Y(H) , GOTO 130

Now typing:

NORTH WEST

produces:

GOING NORTH

18

Chapter 1 Just Following Orders

GOING WEST

and even:

NOR NOR EAST

is decoded as:

GOING NORTH

GOING NORTH

GOING EAST

It would be a lot neater if we deleted all those redundant 'GOINGs' and put
all the reported directions on the same line. We need to PRINT G$ once,
immediately before the INSTR check. Now each time we go through the
loop comparing the current word with those stored, we PRINT R$(N); if
there isa match. As there is a semi-colon after this, the words will be printed
on the same line bu1 we also need to add spaces between them. Finally we
add a simple PRINT just before we go back for a new input, to move the
cursor position on to the next line.

1 2 6 F'R ! NT G$;
1 45 F'R I NT
2 1 0 IF W$=C$ C N) THEN F'R I NT R$ C N)
; " " ; : X • X + X (N) : Y=Y+Y (N) : G0T0 1 30

Now:

NORTH EASTERLY SOUTH WEST

sends you neatly round in circles:

GOING NORTH EAST SOUTH WEST

19

CHAPTER 3

Understanding Natural Language

So far we have only communicated with the computer in a very restricted
way, as it has only been programmed to understand a very few words or
letters and it only recognises these if they are entered in exactly the right
way. For example, if you put a space before or after your command as you
INPUT it then it will be rejected. This is because we are comparing whether
the two strings match exactly.

On the other hand in the real world everyone uses what is known as
'natural' language which is a very sophisticated and extremely variable
thing which only the human brain can cope with effectively. Even if we
forget for the moment the difference between 'English' and 'American' or
even regional dialects of either (can 'Ow bist old but' really mean 'How are
you old friend'?) dealing with language has an infinite number of problems.

Even the most sophisticated systems in the world cannot cope with
everything. There is an old story which illustrates this point very well. The
CIA developed a superb translation program which could instantly convert
English into Russian and vice versa. In the hope of impressing the
President they laid on a demonstration of its capabilities, in which it
converted everything he said into Russian, spoke that, and then retranslated
the Russian back into English. He was most impressed and was totally ab­
sorbed until one of his aides reminded him that he had forgotten that the First
Lady was waiting for him outside. When he ruefully commented 'out of
sight, out of mind' he was amazed to hear the machine come back with
'invisible maniac'!

Dealing with sentences
Everyone knows that real language is made up of sentences, but what
exactly do we mean by a sentence? Well, the most obvious way we recognise
a sentence is that we see a full stop! However if we are going to be able to
deal with sentences, we are going to have to think a lot harder than that.

The Oxford Dictionary definition includes 'a series of words in
connected speech or writing, forming grammatically complete expression
of single thought, and usually containing subject and predicate, and
conveying statement, question, command or request' but also concedes
that it is used loosely to mean 'part of writing or speech between two full
stops'. Phew! Can somebody translate that into everyday English, �lease?

2 1

Artificial lmelligenu on 1he Dragon

The intricacies and illogicalities of the English language are infamous so
how can we expect a computer to cope?

Well, let's start by looking at some simple examples of sentences.

I WANT.

consists of a subject I and a verb WANT

I WANT BISCUITS.

also has an object BISCUITS

I WANT CHOCOLATE BISCUITS.

qualifies the object with an adjective CHOCOLATE

I SOMETIMES WANT CHOCOLATE BISCUITS.

qualifies the verb with an adverb SOMETIMES.
The most important word in all the above examples was 'WANT' as it

conveyed the main idea. The second example was more informative as it
indicated that only one particular type of object, BISCUITS, was wanted.
The addition of an adjective, CHOCOLATE, gave further information on
the type of object wanted, but life became more uncertain again when the
adverb SOMETIMES was included.

Now how could a computer program decode such sentences?The answer
must be to find some logical structure in the sentence, so what 'rules' could
we lay down for this example?

I) All started with a subject I and ended with a full stop.
2) The last word was always the object BISCUITS (unless there was no

object and only two words).
3) If the word before the object was not the verb WANT it was an adjective

CHOCOLATE.
4) If the word before the verb was not the subject I it was an adverb

SOMETIMES.

Let's write a program in which we give the computer sentences and ask it to
break them up into their component parts.

To start off, we need to give it a vocabulary of objects, adjectives and
adverbs to work with. We will READ these from DATA and store them in
arrays 08, AJ and AV, according to type.

22

Chaplt'f J Under.1·1c111di11g Naniral Languagl'

1 0 GOSUB 1000tl
1 0000 [> I M OBI(5) , AJI(5) , RV1i(2)
1 0999 REM OBJECTS
1 101'J0 DATR 8 J SCU ITS, BUt,S , CAl<E
1 1 010 DATR COFFEE , TEA, WATER
1 1 019 REM RC•JECTI VES
1 1 0:�0 (1ATA CHOCOLATE, r.; I NGER , ,JAM
1 1030 r,ATA COL(i, HOT, LUKEWARM
1 1 03:3 REM ADVERBS
1 1040 DATA ALWAYS, OFTEN., SOMET I ME ;
s
1 1 100 FOR H=0 TO 5
1 1 1 1 0 READ os,nn
1 1 1 20 NEXT N
1 1 1 30 FOR N=0 TO 5
1 1 140 READ RJ'li(t·D
1 1 150 NEXT N
1 1 1 60 FOR · N�0 TO 2
1 1 1 70 REAr, AV'S< N)
1 1 1JJ0 NE:�T N
1 1 1 90 RETURN

Now we need to break the sentence into words (see Flowchart 3.1). Once
again we will do that with an INSTR search for spaces, and to make life
easier we will add a space on to the end of IN$ so that the format of the last
word looks jus1 like tha1 of other words.

1 00 I HPIJT !Ht
1 20 !H'S" I NI-+-" "
1 30 5p;, I NSTR(SL !NIil, " ")
1 90 GOTO 1 30

The end of the sentence has been reached when no more spaces can be
found.

140 IF SPoi0 THEN 200

If a space is found then the section of IN$ from ST (current search start)
to SP-ST (current space-current start= length of word) is cut out and
stored in a word store array W$(WC).

1 50 WS (WC) =M I DS < I NS , ST , SP-ST)
1 0 0 1 0 DIM W$ (4)

T o begin with ST==I so that the search starts at the first character in the

23

Arti}idaf Jmelligt11ft' on the Dragon

Flowchart 3.1 Cutting Oul Words

input string. The word count variable WC is set to zero so that the first
word found is stored in the zero element of the word store array.

1 1 0 ST� ! , ,1c�0

The word count i s incremented (so that the next element ofthe arrayW$ is
used next time) and a check made that there are not more than five words in
the sentence. The start position for the next search is then set to one more
than the position of the last space and the search is continued.

1 60 WC=WC+l
1 70 IF WC>:l THEN PRIHT "SENTENCE
TOO l.OHG " , GOTO 1 0i:J
18iJ ST,.SP+ l

24

|

Chapter J Undas1andillg Nawraf La11,:11age

A test is now made to see whether there is a match between the key words in
the sentence and the objects in the vocabulary array O 8$(N) (see Flowchart

3.2). Only words 2, 3 and 4 are checked as these are the only possible

NO

Flowchart 3.2 Looking for a Match

positions for the objec1 in our restricted sentence format. Three different
routines are jumped to according to the position of the matching word in
the sentence. If no match is found a message is printed and a new input
requested.

200 FOi< N=0 TO 5
2 1 0 I F W'II(2)=OBt:< N) THEN :5013
220 IF WI!(3),;08111(N > THEN 6013
230 IF W'li(4)=OB�nn THrn 700
:?40 HEXT N
:?50 PR I NT "08 . .JECT NOT 'FOUND"
2150 GOTO 1 00

If the object was found as word 3 then 1here was neither adjective nor
adverb.

25

Artificial fmellignu·e on 1h11 Dragon

500 PR INT "NO FID.JECT I\/E OR AD\/ER
B "
5 1 0 GOTO ! 0i)

If the object was found as word 4 then there could have been either an
adjective or an adverb in the sentence (see Flowchart 3.3).

600 PRINT " E I THER ADJECT IVE DR A
[)\/ERB"

Flowchar1 3.J Ad•·erb or Adjeclh·e

First we check for a match between the second word and the contents of the
adverb array.

6 1 0 FOR N=0 TO ?
620 IF Wlf(' !)=R\ll(N) THEN �00
630 NEXT N

If no match is found then we check the third word against the adjective list

640 FOR N•=O TD 5
650 IF WS (2) =AJ$ (N) l"HEN 1 000
660 NEXT N

If a match is not found in either of these lists, then it would be useful to

26

Chap1er J Undersianding Na11iraf Language

indicate which word was not understood. The simplest answer is to check
whether the second word was not the verb ' WANT', as in that case the
second word must have been an adverb. On the other hand, if the second
word was the verb then the third word must have been an adjective. Notice
that the actual word which did not match is now included in the message.

6i'0 I F WII(I)< > " WRHT" THEN PRI HT
"ADVERB " , WIJ(1) j " HOT UNDERSTOOD
" El.SE PRI HT "Rl).JECT I VE " ; WIJ(2) ;
" HOT UHDEPSTOOr,"
6!m GOTO 1 00

If a match is found in either test then a success message is printed. Note that
these possibilities are exclusive and that in four words we can only have one
or the other.

900 PRI HT " ROVERS"
910 GOTO 100
1 000 Pl<'INT " AD.JECT I \/E"
!010 c;cJTO 1 00

Where both adverb and adjective are present we must check for both. and
therefore a match in 1he first test also jumps on to the second test (see
Flowcharl 3.4).

700 PR HIT " ADVERB RHD RD.JECT! VE"
i'10 FOP. H"0 TO 2
720 IF �I'S(!)eRVf< H > THEH i'50
7'30 HE:-:T N

If no match is found for the adverb, then this fact is reported: a flag AV is
set to I to indicate failure at this point before the adjective is checked.

i'40 PR INT "ADVERB " J W'II(!) ; " HOT
UNDERSTOOD" • RV.,1
i'50 FOR H=0 TO 5
760 IF WIJ(3)=A.Jl< H) THEH 900
7?0 Nl!:XT N

If a successful match for the adjective is not found then the program loops
back after a report.

790 PP HIT "f!D.JECTI VE " ; WJ;(3) ; " H
OT UNDERSTOOD"
?Q0 GOTO 1 00

27

Anificial lmt'lligence on the Dragon

FI01''Ch11rl 3.4 Ad\'trb and Adjeclin

If the adjective was found then a test is made that the adverb flag AV was
not set before a match is reported. In any case, the flag is reset before the
next input.

1300 IF RV=0 THEN PRHIT " A[UECT I V
E RHD ADVERB OK"
8HJ AV=U
820 GOTO 100

What about punctuation?
As we have already said. you usually recognise the end of a sentence
because it has a full stop, although when you type into a computer you
usually forget all about such trivialities. But what will happen in the

28

Chap1,•r J Undl'rS1a11di11g Na111ral Language

program so far if some 'clever' user puts in the correct punctuation? If you
think for a moment, you will realise that the computer will start
complaining as it will no longer recognise the last word, as this will actually
be read as the word plus the full stop.

We therefore need to check if the last character in the input string IN$ isa
full stop: this is simple as the ASCII code for this character is 46. The best
place to check seems to be immediately after the INPUT. If the code of the
last character is 46, then simply throw this character away and then
continue as before.

Flowchart 3.5 Dealing with Punctuation

We will add this as a subroutine which is jumped to as soon as an input is
made. Other punctuation marks may also appear at the end of the sentence,
so we will read the last character as a variable LC which we will also use
later. This is stored as a simple variable by taking the ASCII code of the last
character in IN$: using simple variables saves a lot of typing of string ($)
indicators (see Flowchart 3.5).

1 05 GOSUB 2000

2000 LC�RSC(R !GHT'llC I N� , 1))
20 10 IF LC,,46 THEN 2 1011
:?l'J90 fi'ETURH
2 me I N'll�LEFTI(IN'li , LEW IN'll ;,- 1) , R
ETURH

29

Artificial lmelligence on the Dragon

More useful sentence terminators are the question and exclamation marks
which often indicate the context of the words. We can distinguish these in
the same way by their ASCII codes and, forthe moment. we will just report
their presence.

2020 IF LCs33 THEH PRIHT"EXCLAMA
HON l " , GOTO <7 1 00
2030 IF L C=63 THEH PRI HT " QIJES1'1O
N" , GOTO 2 1 00

The normal INPUT command will not accept anything after a comma,
which it reads as data terminator. However, LINE INPUT will accept any
text including commas.

1 00 L I NE I HPIJT I HI$

Commas may be useful in indicating different parts of a sentence. which
could be examined as 'sub-sentences· in their own right. However. in simple
cases they are best deleted and replaced by spaces before the sentence is
broken into words (see Flowchart 3.6). Note that this will only function
totally correctly if there is no space after the comma. as any space following
a replaced comma will be seen as a new word.

Flowchart J.6 Replacini: Commas and Apostrophes

1 1 5 GOSIJB 3000
3000 Cf1"' I NSTR(ST , I N!li ., " ., ")
:301 0 I F CM=0 THEt� ST= ! , RETURN
3,Q0 Hl1i"'LEFT•< I N'li , CM- I)+" "+Fii! G
HT'li(I HI, LEH(I N I)-en)
·3030 ST=CM+ I
311l40 GOTO 3000

30

Chapter 3 Umlers1anding Natural language

If you add this line, you can see the punctuation being taken out of the
string item.

:3025 PR IHT INI

Apostrophes can be dealt with in the same way, except that we do not
replace them with a space but simply close up the words.

1 1 5 GOSUB 3000: GOSUB 3 1 00

3 1 00 AP= I NSTR (ST , IN$, " � ")

3 1 1 0 I F AP•O THEN ST• l : RETURN
3 1 20 J N$•LEFT$ (! N$, AP- l) +R I GHT$ C
JN$, LEN C J N$) -AP)

3 125 PR I NT I N$
3 no ST•AF·+ l
3 1 40 GOTO 3 1 00

A sliding search approach
Although the method of examining a sentence described above will work, it
has the disadvantage that it requires the sentence to be entered in a
particular. restricted format. For example, if you enter:

I WANT HOT CAKES OFTEN

the computer will report:

OBJECT NOT FOUND

as it mistakenly takes the last word OFTEN as the object.
On the other hand using a sliding search of the whole sentence for each

key word, without first breaking the sentence down into words, has the
advantage that it allows a completely free input format. In this approach
we take the first key word and try to match it against the same number of
letters in IN$, starting at the first character. If this test fails then it is
automatically repeated, starting from the second character, etc, until a
match is found or the end of IN$ is reached. For example , if IN$ was 'I
WANT CAKE' and the first key word was'CAKE' the comparisons would
be:

Pass I I WA
Pass 2 WAN
Pass 3 WANT

3 1

Art//irial /1111'/hgenn' on 1he Dragon

Pass 4 ANT
Pass 5 NT C
Pass 6 T CA
Pass 7 CAK
Pass 8 CAKE (match found)

Delete lines 1 05- 1010 and add this line to check for the first object OB$(0).

2 1 0 SF!eINSTII!(1 , I Nll, OBl(N)) , IF SP
>0 THE:N PPI NT OBl< N) : " " ;

Each object can be compared in the same way by forming a loop. (Note that
printing a semi-colon after OB$(M) ensures that each word is printed on
the same line.)

200 FOR N•0 TO 5
220 NEXT N

Similar checks can be made for matching with words in the adverb and
adjective arrays.

�.SOO FOR N==O TO 2
3 1 0 SP=I NSTR C 1 , I N $, AV$ (N)) : I F SP
>O THEN PF;J NT AV$ (N) ; "
320 NEXT N
400 FOR N=O TCI 5
4 1 0 SP• I NSTR l 1 , I N$, AJ $ (N)) : ! F SP
>O THEN F'R I NT AJ$ I N J ; "
420 NEXT N
1 000 GOTO 1 00

To report what has been found. and so that we can use the words
discovered later, we will store each in an array as it is detected. We already
have a word store array WS but we will expand it to hold up to 20
words (which should be enough for even a very verbose sentence!).

1 00 1 0 D I M W$ 1 1 9)

If a match is found a temporary string T $ is set equal to the matched word.
and a subroutine called at line I 500. which puts the word detected in thefirst
array element (see Flowchart 3. 7).

2 1 0 SP� I NSTRC L I NIIL 0B'liOn) , IF SP
>0 THEH PP !NT OB'li(N) ; " " . , • T'li00B'li

32

Chapin 3 Umlerstanding Natural Language

00 , GOSUB 1500

1500 ws< we)"n

Flowcharl 3.7 Sliding Search

The word count WC is then incremented. so 1hat the ncx1 word is put in
the next clement. before returning.

1520 �Ic.,i.n:+1

1530 PETURN

Using a temporary string T$ in the actual subroutine means that we can
a lso use it in the tests for adverbs and adjectives in exactly the same way.

3 1 0 SP• J NSTR l 1 , IN$, AV$ 1 N J l : J F SP
>O THEN PR INT AV$ 1 N J ; " " ; : H•=AV$

(N) : GOSLJB 1 500
4 1 0 SP=I NSTR l l , I NS , AJ $ 1 N J l : I F SF'
>O THEN PRINT AJ$ I N J ; " " ; : TS:aAJ$
(N) : GOSUB 1 500

Partial matching
One advantage of the sliding search is tha1 you can easily arrange to
recognise a series of connected words by only looking for some key
characters. This is obviously useful as it saves you having 10 put in both
single and p lural nouns such as BISCU IT and BISCUITS. If you amend
the DATA in line I IOOO as shown below than both will be recognised.

1 1000 DATA 81 SCU I L BUt·L CAVE

]]

A rrijirial huelli,:rnce m, 1h1• Dra1:un

However life is not that simple as using BUN rather than BUNS can
produce some unexpected results. On the plus side it will detect BUN.
BUNS. and BUNFIGHT but unfortunately BUNCH. BUNDLE.
BUNGALOW, BUNGLE. BUNK, BUNION. and BUNNY as well 1

Flowchart 3.8 Checking That This is tht Start of a Word

This problem is not restricted to prefixes as the computer will
also not distinguish between HOT and SHOT. You could include a
check that the character before the stare of each match was a space
(ie that this was the start of a word. see Flowchart 3.8). SP gives
the current start-of-word position so MID$(1N$.SP-1.1) is the
character before this.
2 1 0 SP= HlSTR(L IH'll ., OB'li(t� ::,) · IF SP

>0 THEN IF Mlr>!li(rn'li ., SP- 1 , 1)=" "
THEI-J PRINT OB'li(N); " " ; • T$=OB!li(t-l ;,
• GOSlJB 2000
:3 1 0 SP= H !STR(L IH'll , RV'IIOD) · !F SP
>0 THEI-J IF t1W'li(Hl'li ., SP- 1 , 1)=" "
THEH PR HH RV'li(N); " " , • T!li=R',/'li(N)
• r.;QSUB 2000
4 1 0 SP� I HSTR(1 , IH'll , R.J'liOD) • IF e,P
>D THEfl IF MI Ci!li(I H'I: , SP- L 1 > = " "
THEN PR I HT R..J'li(t·l) ; " " ; • T'll=R._1$(N)
• GOSUB 2000

For this to function correctly on the first word. just add a space to the start
of IN$.

1 1 0 I N!li�" " + I H'll

In a similar way. you could use checks on the next letter after the match. or
the length of the word. to restrict recognised words.

Putting things in order
Although we have now detected all the words in the sentence. regardless of

34

Chapter 3 Umler.uanding Natural 1.anguage

their position or what else is present, they are found and stored in the order
in which they appear in the DAT A. This is because the comparison starts
with the first item in the object array rather than the first word in the
sentence. It would be useful if we could rearrange the word store array so
that the words in it were in the order in which they appeared in the sentence.

To do this. we must keep a record of the sen1ence position of the word
SP and word count WC, as each word is matched in a new word position
array WP. This is a two-dimensional array with the sentence position kept
in the first element, WP(WC.O), and the word count, WP(WC,1), in
the second.

1 0020 D I M WPC 1 9 , 1)
1 5 1 8 WP(�JC , 0)"SP , WP(we , 1)=WC

The actual sorting subroutine which does the rearrangement is at line 4000.
This must only be reached if a match is found.

448 I F wc�0 THEN 4?0
450 GOSUB 4000
460 GOTO 1 0B
470 PR I NT "NO MATCH FOUND"
480 GOTO 1 00

The sort routine (see Flowchart 3.9) takes the sentence position of 1he firs!
word found (first element in the first dimension WP(0,0)) and compares ii
with the sentence position of the second word found (second element in the
first dimension \VP(O+ 1.0)). If the position variable for the first word is of

Flowch111rl J.9 Pulling Words in Order

higher value than that for the second word then the first word found is
farther along the sentence than the second word. and these therefore need
to be swapped around. This will put the sentence-position pointers right
but the word-coum markers also need to be rearranged to the correct
positions. This process is repeated until the word pointers arc all in the
correct order. Notice that the actual contents of the string array which
holds the words are not altered but only the pointers (index) to them.

35

Ar1/fidal lmelli}:t'nce on JIil' Dragon

4000 FOP t·l"0 TO ,IC-2
40 10 IF WP(N, 0 :><WP(tH! , 0 :, THEN N
EXT t·I GOTO 4040
4020 [>=,IP(N, 0) • ,IP(t·I , 0)=,IP(N+ I , 0)
• WP(N+! , 0)e-e[>
4830 D"WP(H, I) • ,IP(N, 1)=WP(fl+ ! , I :,
• WP< N+ 1 ., 1)=CJ • GOTO 40013

If the strings are now printed in revised word-count we order. they will
be as they were in the original sentence. which should make it easier to
understand them.

404.J PRI HT • FOP N=0 TO WC- 1
40513 PR INT ,1$(WP(N, I)) ; " ";
41160 t·IEXT N • PRI NT

All elements in the sentence position array WP(N.0) and the word count
we must be reset to O before the next input.

4070 FOP t·l"'0 TO 1 9
4080 WP(H , 0)=0
4090 NiXT H
4 1 00 WC,,0
4 1 m RETURN

36

CHAPTER 4

Making Reply

More sensible replies
We have considered at length how to decode sentences which are typed into
the computer. but the replies it has produced so far have been very limited
and rigid. Although many of the original words in a scn1ence are often used
in a reply. in a real conversation we look at the subject of the sentence and
modify this word according to the context of the reply.

For example the input:

I NEED REST

might expect the confirmatory reply:

YOU NEED REST

and similarly:

YOU NEED REST

should generate:

I NEED REST

If you look a1 that situation logically. you will realise that for each input
subject there is an equivalent output subject. and that we have simply
chopped off the original subject and added the remainder of the sentence to
the appropriate new subject.

·1· is only a single character so we could check L E FTS(IN$. I). lf this was
T then PRINT '"YOU .. could be added to the from of 1he remainder of the
input, RIGHT$(1N$.LEN(IN$)-I) .

H J IHPUT I N'li

3f:J IF LEFT'li< If,!!S, 1)=" I " THEN PRHl

T " YOU " +J. I GHT!S(Hl'f. , LEN(IN!li)-1)

60 GOTO 1 0

37

Arf!/kial lmdliKence un 1h1' Dragon

In the same way, the first three characters LEFT$ (IN$,3) could be checked
against 'YOU' and replaced when necessary by T.

50 I F LEFTt< I N$, 3 l" " YOU" THEN PR
I NT " I "+R I GHTt< I Nt, LEN(Hl!r.)-3)

If you try that out with a series of sentences. you will see thac it works O K
until you type some1hing like:

YOU ARE TIRED

which comes back as the rather unintelligent:

I ARE TIRED

We could get around this by checking for the phrases ' I AM' and 'YOU
ARE' as well as 'I ' and 'YOU' on their own. but notice that you must test for
these first and add GOTO 10 to the end of lines 20 and 40 to prevent a
match also being found with 'I' and 'YOU' alone.

20 I F LEFT'li(I H'li , 4)" " I AM" THEN P
R INT " YOU RRE"+RIGHT!ll(I N'll , LEW I N
'Ii l-4) , GOTO 1 0
40 I F LEFT'li(I N$, 7):" YOU ARE" THE
�l PR I NT " I AM"+RI GHT'IK l H$, LEN(I N
t)-7) , GOTO 1 0
Although this method will work. the program soon gets very long-winded
as a separate line is needed for each possibility as we must take into account
the length of the matching word or phrase. Where many words are to be
checked. it is therefore better to use a multidimensional string array which
can be compared with the input by a loop.

A convenient format is to have a two-dimensional array 1O$(n,m) where
the first dimension of each element, 1O$(n,0), is the input word or phrase
and the second dimension, 1O$(n,I), is the corresponding output word or
phrase. It is easier to avoid errors if these are entered into DATA in
matching pairs and READ in turn into the array. Start a new program with
these lines which set up the array.

1 0 GDSUB 10000
1 0000 DIM I O'li(3 , 1 l
1 1 000 DATA I , 'tOIJ, 'rOU , I , I AM, YOU
ARE, YOU ARE , I AM
1 2000 FOR- N=0 TO 3
1 20 1 0 READ IO'li(t-L 0 l , IO'liOL 1)
1 2030 NEXT �l
13000 RETURN

38

Chap/er 4 Making Rep/_1

Flowchart 4.1 Using a Corresponding Reply

We will use a looping sliding string search again, which for the moment will
just print out the corresponding word or phrase to that matched, I0$(N, I)
(see Flowchart 4.1). One advantage of the sliding string search here is that it
will happily match embedded spaces in phrases as we have not broken IN$
into 'words' before matching.

HlP.I L I NE I NPUT H l'li
200 FOR N"'B TO 3
2 1 1!1 SP= I NSTR(1 , Htl, I OS(N, 0)) , I F
SP>0 THEN PRINT I O'li(N , 1)
220 NEXT N
250 GOTO 1 00

It is better to redefine the required response word as a new siring which is
the first part of the reply R l $, and then PRINT this when the loop is left.

210 SP= I NSTR< 1 , IN\;, I O'li(N., 0)) · I F
SP>0 THEN P l 'li� I OIC N, 1)
230 PRIHT R t 'li

T o get a fuller reply, w e need t o add back on the rest o f the original
sentence R2$ (after inserting a space). It is not difficult to define the 'rest of
the sentence'. We just need to subtract the end position of the word from
the L ENgth of the sentence and use this value in RIGHT$. SP points to
the start of the matched word: we have a record of the L ENgth of this word
in the first dimension of the array as 1O$(N.0), so we just need to subtract
SP+LEN(lO$(N,0)).

2 1 0 ,3p� rn,,:n:,: 1 rn,, .. mi,: 11 .· o :, :, I F
·:F>D THEil P 1 1- I C'S. • 1 1 1 Vi:'!-· " " 1- F:

39

Ar1iflcial /melligence on 1he Dragon

I GHH(J t·l't ., LEI+ I tn :, - ,: :F' +LEtV I O•t, II

2?8 PPitrr R 1t+P2T

Flowchart 4.2 A Fuller Reply

Now when you try:

I AM CLEVER

the computer agrees:

YOU ARE CLEVER

But if you then press RETURN again it s1ill tells you that you are clever­
which is not lrue, as you have not emptied RI$ and R2$ before looping
back to the next input!

Before you feel too clever try:

WE ARE STUPID

40

Chapter 4 Making Reply

which may well surprise you when it gives the reply:

YOU

If you think for a few moments, you will see that one of our keywords is
hiding inside another word in this particular sentence. If you cannot see it
then try:

WE ARE INCOMPETENT

where the computer disagrees with you by returning:

YOU COMPETENT

Although each keyword is tested for in turn, each one is set to R I$ when a
match is found so only the last match is reported. As the keyword is only
checked for once in each sentence, embedded 'I' only causes problems when
this is not the keyword in the sentence.

To get around this we must consider which keywords may cause
problems. Although the letter 'I' is very common, it is very rarely the last
letter in a word and so we could check that there is a space after the
keyword. We must treat all keywords in the same way so add a space to the
end of each. This could be done by changing all the DAT A but it saves
memory in the long run if we add the space as the array is set up. Note that
there is no need to add spaces on to the end of the replies.

1 2020 IDtOL 0)= 101-<H, 0)+ " "

We also now need to subtract one less character from IN$ to give R 1$, as
the space has now become an integral part of the keyword.

210 SP, I NSTR(l , IN$, JOl(N, O)) • 1 F
SP>0 THEN R1t=IOS(N, !) • R2!1i"' " "+R
I GHU(I NS , LEN(I t�'li)-(SP+I..EN< I 0$(t-l
' 0)))+!)

The computer will now readily agree about your incompetence.
If the first keyword is not at the start of the sentence, then everything

before it will be ignored in the reply.
For example the answer to:

WHAT IF I FALL?

will be:

41

Arrificiul l111ellignu·e on 1Jw Dragon

YOU FALL?

Some strange results can still occur when two true keywords are present.
For example:

WHAT IF YOU AND I FALL

gives

I AND I FALL

and

WHAT IF I AND YOU FALL

replies

I FALL

However, adding more suitable keywords is easy and some combinations
will just not be acceptable. To make the routine more general, it is better to
define the number of keywords as a variable KW and use this in place of
the actual number.

1f) KW=5 , GOSUB H Jl-)08
:�00 FOR N=0 TO KW
I l'i00,J D I M I O'li(KW, I)
I mm DATA WE , WE . THE'(, THEY
1 20fJ8 FOP N=,0 TO Kr-l

Now the answer to:

WHAT I F WE FALL''

is the more logical:

WE FALL''

Pointing to replies
So far our computer has displayed only slightly more intelligence than a
parrot. as it has merely regurgitated a slightly modified version oft he input.
The next stage, therefore, is to make it take some logical decisions on the

42

Chapter 4 Making Replr

basis of the input before it replies. First, we need to clear enough string
space (1 ,000 bytes) and then jump to an initialisation routine.

10 CLEAP 1 008
20 GOSUF: 1 00813

The numbers of subjects SU, verbs VB and replies RP are defined
as variables so that the program can be easily expanded, and three arrays
using these are set up. (As we have a zero element in the array, these values
are all one less than the number of words.) SU$(n,n) is a two-dimensional
array which is concerned with the subjects in the input and output
sentences. The first dimension (n,0) contains the recognised subject words
and phrases allowed in the input, and the second dimension (n, I) contains
the opposites which may be needed in the output. V8$(n) holds the legal
verbs, and RP$(n) a series of corresponding replies.

1 0000 SLJ,;26 • 1/B=6 • RP�6
l fl0 H l MM SIJ'li(SIJ, I)
1 0020 D I M VB'll(\/8)
t el331!l DIM RP'II(RP)

Tabl, 4.1: P•irs or Subjttls in SUS(n,n)

SU$(n,0) SU$(n, 1)

I HAVE YOU HAVE
I'VE YOU'VE
1 AM YOU ARE
I'M YOU'RE
YOU HAVE I HAVE
YOU'VE I'VE
YOU ARE 1 AM
YOU'RE I'M
YOU

SHE HAS SHE HAS
SHE IS SHE IS
SHE'S SHE'S
SHE SHE
THEY'VE THEY'VE
THEY ARE THEY ARE
THEY'RE THEY'RE
THEY THEY
HE HAS HE HAS

43

I

Anifidof l111dlig1•11n' m1 tlw Dro,:011

HE IS
HE'S
HE
WE HAVE
WE'VE
WE ARE
WE'RE
WE

HE IS
HE'S
HE
WE HAVE
WE'VE
WE ARE
WE'RE
WE
YOU

The first two lines of DATA contain paired input and output subjects (see
Table 4.1) and these arc READ into corresponding dimensioned elements
in the SU$(n.n) array. As the pronouns ('I'. ·vou·. etc) are frequently
linked to other words to form phrases (such as ' !'VE'), these combined
forms are also included in the DAT A. Notice that these are arranged in
such an order that the most complete phrase containing a keyword is
always found first. A space is added on to the end of each element, so that
some clashing of partial matches is avoided and a space is automatically
formed in the reply.

1 1 >J08 [,ATA I HAVE , '/OU HAI/E, I ' 1/E,
YOU ' \/E , I RPI , YOU ARE ., I ' M , YOU' RE, Y
OU HA\/E., I HAVE, '(OU ' VE., I ' VE , 'r'OIJ · R
RE ., I AM, YOIJ·' RE , I ·' J•t , '/OU , I
1 1 010 DATA SHE HAS , SHE HAS , SHE I
S , SHE 1 '3 , SHE ' S , SHE ' S , SHE , SHE , THE
Y' VE., THEY' VE-, THEY ARE .. THE'(APE., T
HE'l ' PE , TH&:'r ' RE, THEY, THEY
1 1i'J2f l r,ATA HE HRS , HE HAS , HE I S , H
E I S , HE ' S , H� ' S, HE, HE , WE HAVE , ,JE
HAVE., IJE ' VE, IJE' \IE , ,JE ARE , ,JE ARE , ,J
E ' PE , WE ' RE, WE ., WE , I , ','OU
1 2088 FOP M=f:l TO SU
1 20 1 8 REAll SlJ'liOL 8) , SJJ!li(H, I :,
12028 SUt< H , 0)�SlJl(H, 0)+ " " • SIJ'li(N
, I)=SIJ't(H, 1)+" •
1 2i'J:30 HEXT H

The next DATA line contains the main verbs which are READ into
YB$(n). The verb 'to be' is omitted as its variations are so complicated.
:i.nd many of its versions are already ac counted for in the 'subject' check.

I U'J30 DATA HATE, LOI/E , K l l.L , D I SL I K
E , L IKE , FEEL, KH0W

44

I

Chap1er 4 Making Reph-

1 2048 FOP N=8 TO VB
1 2050 PEAD ve,(N)
1 20613 NEXT N

The last set of DATA contains the replies which are put into RP$(n), before
control RETURNs to the main part of the program. To make things simple
to understand and check at this stage, all the replies contain the original
verb, although of course they could say anything.

1 10413 DATA PPOBRBL'i' HATE YOU AS
WELL l.01/E YOU TOO , Kl LL YOU , D ISLI
KE LOTS OF TH! Hf_;:; , L I KE CHIPS., FEE
L POWERFUL , KNOl� EVl"R','TH ! HG
1 2070 FOR H=O TO RP
1 2080 REA[, FP'!J(JI :,
1 2090 HEXT N
1 :31300 RETURN

Stripping the input
The input string IN$ is searched for question marks, exclamation marks
and apostrophes (CHR$(34)). and these are cut out as before by a
subroutine at line 1000.

1 08 L l f·lE I NPUT " > " , I H'li • I N$,, l tsl$+"
u

1 1 13 ST•1 • S'li= " 7 " , GOSUB 1000
! :?0 ST= t • S'li= " t " • GOSUB 1 008
1 ?0 ST" 1 • St=CHF$r 34) • GOSUB 1 000
1 8flfJ SP= I NSTR(ST , IM'li ., S'f; ::,
1 0 1 0 I F SP=l'l THEN RETIJPM
W20 I N'li=LEFT'li(H l'li , SP- I l+P I GHT$(
IH'I, LEW I t-")-SP)
1 03VJ ST=SP+ 1
HJ4":i GOTO 10>)�1

Matching
The input string is now compared with the list of subjects in the first
dimension of S U$(n,n) (see Flowchart 4.3). If there is no match then a new
input is requested. or else a subject match variable SM is set to the element
number at which a match was found.

45

Artificial lntellignKI' m1 the Draion

Flowcharl 4.J Setting Maleh Pointers

200 FOP H=0 TO SU
2 1 0 SP= IHSTP(L IN1i , SIJ'fi(N , (1))
221'J I F SP='3 THEN NE>:T fl , GOTO 1 00
?.3'3 SM�N

The verb array is now compared with INS. If no verb is found. then the
input is rejected, or else the verb match variable VM is set.

240 FOP N='3 TO VB-
,��0 SP= I HSTP(! , I N'li , 1/B'li(H))
260 I F SP=0 mm NE:�T H , GOTO 10'3
271'J 'm�N

46

Clwp1er 4 Makin}: Rep�r

Making reply
Now that the subject and verb have been identified, we can pick up the
appropriate reply by using VM as a pointer to the reply array RP$(n).

5013 RL'l=RP,< Vf1)

In the simplest case we can just add the appropriate subject to the front of
RL$ before we print it.

':i?0 PL'J:�SIJ'li(SM., 0)+Pl.'.I
SSO PP IHT Pl. 'Ii
s,;� GOTO 1 80

Now. for example. if you type in:

I HATE COMPUTERS

the program will reply with:

I PROBABLY HATE YOU AS WELL

and:

I KNOW A LOT

generates:

I KNOW EVERYTHING

Alternative subjects
If you prefer the machine to agree with you rather than trying to beat you at
your own game, then just change the subject added to RL$ to the second
element of 1he array (the 'opposite').

'.i2i:J Pl.t�SJJ'li(Sf1, 1)+F:l.$

now

I KNOW A LOT

generates:

YOU KNOW EVERYTHING

47

Anijkial l111e//ign1ce 011 tlw Dru,.:011

For more variety, you can pick the subject at random from the first or
second element. so that the reply is not predictable.

S l O RS�PHDC? :>�!
520 RL 'li�SU'li<' SM , RS)+RL. 'II

Putting the subject in context
It would be more sensible altogether if we chose the correct subject
according to the contex1 of the reply. but to do that we must have markers
in 1he reply array. We will use a slash sign ' / ' to indicate that the word in 1hc
first dimension of the subject array is to be used, and an asterisk ·•· to
indicate that the word in the second dimension is to be used.

1 1 040 ORTA /PROBABLY HAT&: YOU AS
WELL ., /LOVE YOU TOO., /Y: ILL '/OU , :t[:•

I SL I KE LOTS OF THINGS, /LI Y:E CHIP
S ., tFEEL. F'Ol�ERFUL ., tY:HOW EVER'!THIM
c;

We can now search the reply string RPS(VM) pointed to by the verb
marker VM for a slash sign '/'. If one is found. then the contents oft he first
dimension of the subject array SU$(SM.0) arc added to the reply R L$. less
the first character (the slash sign, see Flowchart 4.4).

Sr.JO Rl. 'li=RP-.(VM)
510 SP� I NSTP< L PL'li, .. _ ,, . ,)
520 I F SP >fJ mm 8r:J0
800 RL'l:.,sU'li(SM, fJ)+f- 1 GHT9i(RL'li., Lrn
/ Pl.'1:)-1)
8 1 0 GOTO 53fJ

Flowchart 4.4 Pulling the Subjec1 in Context

48

Chapter 4 Making Repl_L

On the other hand if no slash sign is found in the reply then a second search
is made for an asterisk ·•·. If this is found, then the second dimension of
SU$(n,n) is used in the same way.

'.i30 SP,, I NSTP(1 , PL'I, , " * ")
54"l IF SP>B THEN 820
,320 PL'li=SU11(SM; I)+PI GHT'li(RL'IL LEt-l
< PL'li)-1)
830 GOTO 550

Now:

I LOVE ME

will give:

I LOVE YOU TOO

but:

I FEEL POWERFUL

produces:

YOU FEEL POWERFUL

Inserting into sentences
To make things simple, we have always started our reply sentences with the
subject, but in real life this is not always the case. Now that we have markers
in the replies to indicate what type of subject is to be added, we can also use
them to indicate where in the reply to insert this word or phrase. First we
will amend the DATA so that the word to be inserted is never at the start, to
make the insertion process obvious.

1 1 040 [>ATA 00 YOU PERUSE THAT
PPOBABL Y HATE ','OU AS WELL .. MELL ,,
l.0\/E VOIJ TOO , IF /DOW T Kl LL ','OU
F I PST , SO �IHAT *DI SL.I KE LOTS OF T
Hrnr.s, DO /l.IKE CHIPS, "1H',' c,o :t.FEE
l.PO•JEPFUL, HmJ DO rnmw EVER'/THIN
[,

49

Artificial lmelligenre an the Dragan

Flowchart 4.S Inserting into a Sentence

We actually already have a record of where to insert the word as SP tells us
where in the reply the slash or asterisk was found. All we need to do is to
take the pan of the reply before the marker, LEFT$(RL$,SP - I), add the
correct version of SU$(SM,n), and then the rest of the reply
RIGHT$(RL$,LEN(RL$)-SP).

81clfJ PL'll�LEFT'll(RL'!; , SP- 1 ;,+SU'll(SM, l'l
)+R I GHT'$(RLl , LEH(PLt)-SP)

'32fJ PL'C"LEFT'f!(Rl.'lo , SP- 1)+5U'li(SM , 1
HPI GHT'I:(Rl.'li , LEW Rl.'li HilP)

Now:

I WILL KILL HIM

produces:

IF I DON'T KILL YOU FIRST

and:

I DISLIKE COMPUTERS

gives:

SO W HAT YOU DISLIKE LOTS OF THINGS

50

Chapter 4 Making Repl_r

Although we are now inserting the subject into the reply sentence more
naturally, we are only dealing with one subject per sentence. Another
minor modification will allow us to insert any number of subjects into a
sentence. All we need to do is to keep repeating the search for markers until
no more are found. A start variable ST is defined as I in line 500, and then a
search is made for the first type of marker. When a match is found, ST is
reset to one more than the match position. When R L$ has been modified by
line 800 we now need to jump back to 5 10 to look for more markers. If no
match is found for the first marker then ST is reset to I. The second type of
marker is then checked for in the same way.

500 RL 'S.,PPti(VM) , ST" 1
5 10 SP,, I HSTR(ST, RL'li , " / ")
520 IF SP>l3 THEH ST,.,SP+ J , GOTO 80
0 , ELSE ST�!
530 SP� IHSTR(ST , PL!li, " f ")
5�0 I F SP>l'I THEH ST,,SP+! · GOTO 82
0
'?HJ GOTO 511'1
830 GOTO 530

1 Hl40 DATA DO 'i'OU REAL I SE THAT ,­
PROBRBLY HATE YOU AS WELL , 1,/El.L ,­
LOVE YOU TOO, IF /DOH' T f<'.I LL ','OU
F ! PST , SO WHAT /DI SL I KE LOTS OF T
H!HGS ESPECIRLL'(f , DO /L I KE CH IP
s' WHY r,o :?:FEEL POWERFUL ' :fTH !HK *
KHmJ EVERYTHI NG

Now:

I KNOW EVERYTHING

produces:

YOU THINK YOU KNOW EVERYTHING

and:

I DISLIKE COMPUTERS

gives:

SO WHAT I DISLIKE LOTS OF THINGS ESPECIALLY YOU

5 1

Anijkia/ Intelligence on the DruK0/1

OBJECTions on the SUBJECT
Everything is starting to look rosy until you try something like:

I HATE YOU

which replies:

DO YOU REALISE THAT YOU PROBABLY HATE YOU AS WELL

The problem here is that we are jumping out of the search routine as soon as
the first match is found, and that although we are checking for the subject
'I' we are finding the object 'YOU' first. As 'YOU' comes before 'I' in the
subject array this is found first, in spite of the fact that it comes later in the
sentence.

As we cannot practically mimic all the intricacies oft he human brain, we
will have to make the assumption that the subject always comes before the
verb, and the object after it. In the program so far we have been checking
for the subject before we checked for the verb, and we will have to reverse
that order. The verb position in the input is the value of S P when a verb is
found, so we will save that as a verb position VP pointer.

2013 FOR N�l3 TO YS
210 SP'" I NSTP(1 , IN'$, VBIOD))
2?.8 I F SP=0 THEN NEXT N , GOTO 1 013
::>�8 Vl'f"'N , VP,,SP

Now when a match with the subject array is found, we can compare that
position SP with the stored verb pointer VP, and reject the match if the
subject is positioned after the verb (see Flowchart 4.6).

:?40 FOP N�13 TO SU
2ci8 SP• I t!STP(1 , l N!li , SU'$(t·l, 8))
?.60 I F SP�l'I THEf.l HE'.H H , GOTO 1 813
2711 I F SP>VP THEN NEXT N , GOTO 10
13
:?Sf) SM�H

(If you are too lazy to retype those lines you can add a couple of jumps to
rearrange the order instead.)

1 40 GOTO 240
,.-:31 GOTO 500
271 GOTO ?.00
?.713 VM�N · 1/P�SP

52

Chapter 4 Making Reply

?.25 I F SP>VI" THEN HEXT t·l , GOTO 1 0
0

Flowchar1 4.6 Rrjecling Object 1\·latches

A change of tense
If we change to the past tense of the verb, we may or may not find this. With
1he first five verbs the situation is straightforward: to change to the past
tense we jus1 add 'D' to the end of the present tense. Both forms are
therefore accepted.

HATE

LOVE

KILL

DISLIKE

LIKE

HATED

LOVED

K ILLED

DISLIKED

LIKED

53

Arr/(i<"ial huelli1:1•nce on rhe Dragon

However. with the last two verbs the word changes completely, so there can
be no simple match. Although we might get away with checking for ' KN', as
this is a rare combination, it would not be practical for us to use such a
common group as ' F �' as a keyword.

FEEL
KNOW

FELT
KNEW

It is easier if we treat all verbs in the same way and. if there are no
constraints on memory. then we can simply put all the possible versions
into the verb array in pairs.

10000 SU=26 • Ve= t 3 , PP=6
1 1030 DRTA HATE, HATED , LO\/E , LO\/ED
, K ILL ., K ill.LED, MSLIKE, DISLIKED, L
l f<'.'E , L IKED, FEEL , FELT, KHCIW, KHE�J

Unless we want to have different replies for the different tenses, we will now
have to divide the verb variable VM by two, to point to the correct reply
for both forms.

54

CHAPTER 5

Expert systems

A human expert is someone who knows a great deal about a particular
subject and who can give you sensible advice ('expert opinion')
on it. Such expertise is only acquired after long training and a great deal of
experience, so unfortunately real experts are few and far between. In
addition they arc often not on hand when a problem needs to be solved.

Scientists have therefore applied themselves to the problem of producing
computer programs which mimic the functions of such human experts.
Such programs have the advantage that they can be copied very easily to
produce an infinite number of experts. and of course they do not need tea­
brcaks. sleep. pay-rises. etc. ei1her! Of course. the computer must be 1otally
logical and can still only follow pre-programmed instructions entered by
the programmer. It is interesting to note that science fiction authors have
envisaged problems when the ultimate ·experts' (such as HAL in ·200 1 : A
Space Odyssey· or Isaac Asimov's positronic robots) are faced with
alternative courses which conflict with more than one of their prime
directives and which produce not system crashes but 'pseudo-nervous
breakdowns·.

Before we can start wri1ing programs for ·expert systems·. we must ask
ourselves how a human expert works.

Let us first consider the simplest situation. where the expert's task is to
find 1he answer to a known problem.

First of all he takes in information on the current task.

Secondly he compares this with information stored in his brain and looks
for a match.

Finally he reports whether or not a match has been found.

What we need here is simply a database program which tries to match the
input against stored information (see Flowchart 5.1). A user-friendly
system would accept natural language (see earlier). but to keep things
simple here we will stick to a fixed input format. To start with. let's look a1
recognising animals by the sound they make. We set up two arrays: the
question array QUS(n) contains the sounds which arc known. and each

55

Art!fkia/ lmt•llii:n1C'e u11 tlw Drai:u11

Flowcharl 5.1 A Simple ·Expert'

elemem of the answer array AN$(n) contains the name of the relevant
animal.

1 IJ GOSUE: 1 l".l,I0•)
H l0011 (:, I M PU'li< 4) , Rt-I'll(4 ;,
10010 DATA M I ROW , CRT , WUFF , DOG , MO
0, COW, HOOT .• OWL, HE IGH, HOP,,E
1 002�1 FOR t-1�0 TO 4 • READ i,Ul< H), A
Ml(H) • HEXT t·l
1 '3030 RETURt·l

Now we just need to ask for a sound and compare it with the contents of
QUS(n).

2>) PP i tH " WHAT HO I S E DOE:3 IT MAr:E
";

:38 HlPUT H l'li
40 FOR H=i'J TO 4 • I F JN$c.cOU$(tD TH
EN 1 00
50 tlE:,;T H
60 PR IHT " SOPRY I DOM ' T KMOW THAT
ot!E"
;s0 c;orn :c0

H l0 PP It-H " Rt! RtH MAL THAT " , OU$(
H) ; "S I S A " ; RH'IJC H)
1 1 ,1 GOTO 2H

56

Chapter 5 E."<fN'rl .\ntems

Perhaps we should say at this point that our computer expert may well be
better at this task than the human kind. as it cannot make subjective
judgements. become bored, or accidentally forget 10 check all of the
information in its memory. On the other hand it is not very literate as it
reports 'A OWL'. c1c. (We will leave you to tidy that up by adding a routine
which checks whether the first letter of the answer array match is a vowel.)

Branching out
The example above is very simple as only one question is asked, and there is
only one possible answer. In reality we need to be able to deal with more
difficult problems. where the answer cannot be found without asking a
whole series of questions. For example, what should an expert do if he put
the key in the ignition switch of his car and turned it, but nothing
happened?

There could be a number of reasons for this:

FLAT BATTERY
BAD CONNECTIONS
SWITCH BROKEN
STARTER JAMMED
STARTER BROKEN
SOLENOID BROKEN

To find the cause. he should follow a logical path and make a number of
checks. The firs1 thing to do is to check whether it is only the starter motor
which is not working:

IS IGNITION LIGHT ON? (Y /N)

If the answer to this is 'N' then there is no power al the switch. so the cause
must be one of the first three possibilities listed above. We can narrow
things down more by finding out if the lights work:

DO LIGHTS WORK CORRECTLY? (Y/ N)

If the answer is yes. then the battery cannot be flat and it must be connected
to the light switch correctly. So presumably the switch is broken and a
suggestion can be made that you replace it.

REPLACE IGNITION SWITCH

If the lights do not work, then the connections should be checked.

57

Arrifil'ial lntelliRt'TWI' 011 1he Dragon

ARE BATTERY CONNECTIONS OK? (Y/N)

If the answer is yes. then the battery is f lat so you must charge i1 (or push!)

CHARGE BATTERY OR PUSH CAR

In the same way. a sequence of checks could be made to deal with a
situation where there is power but the starter mechanism itself does not
work (the last three possibilities).

Flowchart S.2 A Branching 'E:lperr'

The simplest way to program this branching structure is by a series of IF­
THEN tests (see Flowchart 5.2).

HJ PP HH"FRIJLT D I AGNCIS I S "
2 8 PP!t-H

58

Chapll'r 5 Experl Srstems

30 PR I N T " I S ! Gt·H T J OJ-l L I GHT Ofl (Y
/�j) "
40 I HPUT l t·lf
58 I F Hl'li" " Y " THEM 1 80
60 PR I HT " DO L I GHTS ,lORK CORRECTL
'i (Y/��) "
? O IHPUT ! H'$
80 I F I N'$="Y" THEN 1 1 0
90 PR!NT"PEPLACE I GH I T I DN SWI TCH
"

l>J8 PUN
1 Hl PR!HT " RRE BATTERY COHNECT I OH
S OK (Y/t�) "
1 ?. 0 I HPUT I N'li
1 30 I F ! N'll= " Y " THEN 1 60
1 40 P R I NT " REPA I R CotlNECT I OHS"
1 51'! RUH
1 60 PR I NT " CHARGE BATTERY OR PUSH
CRR 1 "
1 70 F'UH
1 80 ----- �tc ------

This sort of program is relatively easy to write. but as usual is inefficient as
it becomes longer and more complicated.

Pointing the way
A more efficient way to deal with the situation is to put the text into arrays
and have pointers which direct you to the next question or reply, according
to whether you answer yes or no to the current question (sec Flowchart
5.3).

The format for entering the DATA for each branch point is. then:

(TEXT),(Pointer for 'YES').(Pointer for'NO')

The first question was:

IS IGNITION LIGHT ON? (Y /N) . . . I

If the answer was ·N' then you need to ask the second question:

DO LIGHTS WORK CORRECTLY'! (Y /N) . . . 2

Otherwise you need to continue with the other part ofthc diagnosis(which

59

Artijkiul lmelfip,e11ce un the Dru,:on

Flowchart S.J Poinling lo the Nul Oulput

we have not included but which would be point 7).
We need to set up three arrays: OP$(n) contains the output (text). Y(n)

the pointer for ·yes·. and N(n) the pointer for ·no'. To make the program
easy to modify. a variable NP is used for the number of points. The DATA
is read in groups of three into each element in these arrays. Where the
DATA point is a possible end of the program. this is indicated by the Y(n)
and N(n) pointers being set at zero.

I CJ GIJSIJ8 1 00(18
W8el0 NP�?
10010 D I M OP�(NP l , YC NP l , N(NP l
1 1 '1CJ0 [>ATA " I S I Gt! I T J ON L I GHT ON
II J 7 , 2
I 1 "1 1 0 DATA " f)O L I GHTS !�ORK CORRE
CTL'l 0 , 3 , 4
I 1 02F.J DATA " REPLACE Svl ! T CH " , 0 , 0
I l i'J:30 DATA " APE BATTERY COMHECTI
ONS OK 1 1 > 5 ; ,S

60

Clwpter 5 t.".tpfrt Sy.1·1e11u

1 1 040 DATA " CHAPGE BATTERY OR PU
SH CAR 11 , 0 ., l?J
1 1 050 DATA "REPAI R Cot�NEC T I ON " , 0
I)
I l >J60 DATA " -rest of Pro"lr3.ro- " , 0
, [J
1 :?0138 FOR t-l� 1 TO HP
1 20 1 0 PEAD fJP'$(N) , 'r'(W•, t·V N)
1 2020 HEXT N
1 3000 PETURN

The actual running routine is very simple. A pointer CP is used to indicate
the current position in the array: to begin with this is set to 1 and the first
text printed. If this is an end point Y(CP)=0 (hardly likely just yet!). then
CP is reset to I so that the sequence starts again. On the other hand. if a real
pointer is present then an INPUT is requested. If the input is ·v·. then CP is
set to the value contained in the appropriate element of the Y(n) array.
otherwise it is set to the value contained in the N(n) array.

20 CP=l
31:J PR !HT OP'I:(CP)
40 I F '/(CP)c0 THEfl 20
50 ItlPUT lt-l'I:
60 IF J N't= " 'l " THEt� CP='r(CP); GOTO 30
70 CP=fV CP)
90 GOTO 30

A parallel approach
An alternative to the sequential branching method described above is the
parallel approach which always asks all the possible questions before it
reaches its conclusion. This method usually takes longer than following an
efficien1 tree s1ruc1ure. but it is more likely to produce the correct answer as
no points of comparison arc omitted.

Let us consider how we might distinguish between various forms of
transport.

We will consider eight features and mark 1 or 0 for the presence or
absence of these in each of our five modes of transport (see Table 5.1). If
you look closely you will notice that the pattern of results varies for each of
the different possibilities so it must be possible to distinguish between them
by these features.

61

Arti/idal /1111•1/il(t'lln! on thi' Dral(on

Table 5.1 : Presenct or Abstnce of Features

bicycle car train plane horse

wheels
wings 0
engine 0
tyres I

rails 0
windows 0
chain 0
steering

We will enter these values as DATA and then READ them into a two­
dimensional array FE(n,n) which will hold a copy of this pattern, together
with a string array containing the names of the objects OBS(n).

1 '3 GOSUB 1 0>)00
1 0000 D IM 08$(5) , FE(5 , 8)
1 1 000 DATA B ICYCLE, 1 , 0, 0, 1 , 0, 0 , 1
, 1
1 10 10 DATA CAR, ! . fl , L ! . 0, 1 . 0 , 1
1 1 020 DATA TRAIN, 1 , 0, 1 , 0 , 1 , 1 , 0 , 0
1 1 03� DATA PLRNE, 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1
1 1 040 DATA HORSE , 0 , 0 , 0 , 0, 0 , 0 , 0, 1
1 2't!J00 FOR f/: 1 TO 5
1 20 1 0 REAC> OBt< N ;,
1 2020 FOR M: 1 TO 8
1 2030 REAC> FE(N, M)
1 2040 NEXT M , N
1 3000 RETURN

We can now ask whether the first feature is present or not and use the reply
to print out which modes of transport match al this particular point (see
Flowchart 5.4).

1'00 PR INT "DOES IT Hfl'./E �/HEELS"
500 HlPUT IN'li
5 18 AN= 1 ° ! F !N$• "N " THEN RN=B
3;�>.J FOR N= 1 TO 5
5 30 l F FE< N , 1)=AN THEN PR JMT OB'li
< fD
348 HE'.<T fl

62

0 0
0
0
0
0
0
0
0 0

0
0

0
0

0

1 1 1 1
1
1
1

1

1 1

1
1

1 1
1 1

1

1 1
1

Chap1er 5 Expert S_ntem.v

Flowchart 5.4 A Parallel Approach

In this case. answering ·y· will produce a print-out of:

BICYLE
CAR
TRAIN
PLANE

and answering 'N' will p roduce a prim-out of only:

HORSE

This clearly demonstrates a possible disadvantage of the parallel method
as, although we have just shown that only a horse does not have wheels. the
program insists that we s1ill ask all the other queslions before it commits
itself. This is not really as silly as i1 seems at first. as if you answer 'Y' to the
next question ('does it have wings') you will see that the computer quite
logically refuses to believe in flying horses.

63

Artificial lmelligenn• vn lht' Dragon

If we put the actual comparison part as a subroutine we can use it to
check for all eight features in turn. We would need to make slight
modifications, adding an array pointer AP which is incremented to check
the next element of the feature array FE(N,AP) in each cycle (see
Flowchart 5.5).

Flowchart 5.5 Checking the Fealures in Turn

1£10 PR!HT"C,DES I T HAVE �!HEELS"
1 11'1 GOSUB 5013

1 2,1 PRINT"DDES I T HAVE H INGS"
1 30 GDS!JB 500
1 40 PRIHT"DDES I T HAVE RH EMGINE
"
1 5� GOSUe 588

160 F'RHIT"DOES I T HAVE TYRES"
1 7� GDSIJB 5013

1 80 Pl<ltH " DOES I T l·lEED RAILS"
1 510 GOSUB 500

64

200 PP I NT"DOES IT HAVE WI NC•O�lS "
,: W GOSLJB 5ij0
220 PP ! tH"DOES I T HAVE A CHA !t-l"
;::,:313 GOSIJB 500
240 PR I NT " IS IT STEERABLE "
?c-8 GOSUB 500
4i'JfJ PRINT
4 1 13 RUN
5 1 0 AP=AP+! • AN= ! • I F It-l'li""N" THEM

Rf�=0
53fJ IF FEU l , AP)=AN THEN PR I NT 08
'l(N l
co6fJ fl'ETURt·l

Top of the pops
The previous routine will print out a list of matches for each individual
ques1ion as it proceeds. but it will not actually tell us which set of DATA is
an overall match for the answers to all the questions. We can produce a
SCO R E which shows how well the answers match the DATA by having a
success array element SU(n) for each objec1, which is only incremented
when a match is found FE(N.AP)=AN (see Flowchart 5.6).

Flowchart S.6 Measuring Succns

260 PRI NT
270 PRHff"SCORE"
280 PRI NT
300 FOR H= ! TO �

65

Anijil'/ul ll//e/lig;'11c1; 011 1/i,, Druxo11

3 1 1"1 PRINT OB'li<H) , SU(N)
320 Nl!:XT N
531"1 I F FE< N , AP)�RH THEN PR I HT OB
'li(H) , SU(N):SU(�l)+ I
U'/010 D I M SU(5)

If a complete match is found then SU(n) will be equal to 8. Where one or
more points were incorrect the score will be lowered. Scoring in this way is
particularly useful where the correct answers to the questions are more a
matter of opinion than fact (eg is a horse really steerable?), as the highest
score actually obtained probably points to the correct answer anyway.
(Notice that in this case each correct answer has equal weighting.)

Better in bits
You may have noticed that we just happened to use eight features for
comparison and it may have occurred to you that this choice was not
entirely accidental as there are eight bits in a byte. If we consider each
feature as representing a binary d igit (sec Table 5.2). rather than an
absolute value, then each object can be described by a single decimal
number which is the sum of the binary digits, instead of by eight separate
values. We will convert to decimal with the least significant bit at the top so
that. starting from the top at 'wheels', each feature is equivalent to I. 2. 4. 8.
16. 32. 64. 128 in decimal notation.

Tablt 5.2: Binary Wtighltd Futures

bicycle car train plane horse

wheels I

wings 0
engine 0 4 4 0
tyres 8 8 8 0
rails 0 0 16 0 0
windows 32 3 2 32
chain 64 0
steering 128 128 0 128 1 28

sum total 20 1 17] 53 175 1 28

It is not too difficult to convert our 'score' of I to 8 into the appropriate
binary value. as long as we remember that the decimal value of the binary
digit BV must double each time we move down, and that we must only add
the current binary value to the score if the answer was ·yes' (AN= ·1. see
Flowchart 5.7).

66

1 1 1 0
0

0
0 0

2 0
4
0

0

0
0

Chap1er 5 Exprrt SysU'III)'

Flowchart 5. 7 Producing a Binary Score

If you consider for a moment, you will realise that we only need to keep
track of the total number produced, SU, by adding the binary values of the
'yes' answers. There is no need to loop through and check each part of the
array contents each time, or even to have a two-dimensional array at all!
The only DATA we need to enter are the overall decimal values for each
object, DV(n), and when all the questions have been asked we can check
these against the decimal value obtained by the binary conversion of the
'yes/ no' answers, SU (see Flowchart 5.8). The simplest thing for you to do
now is to delete everything after line 260 and start entering from scratch
again!

27'0 PRIMT., " SC:ORE " , f:;I.J
2S8 F'RIHT

67

Artificial foll'lligence 011 1/w Dmgon

30fl FOP M= l TO 5
3 1111 IF D\I(M)=:;u THEH PR I IH , " OB•�(
tl) · c;oTO 40fl
320 t·lEXT N
330 PRIHT ., " OF.UECT HOT FOUi-le- "
400 PPit-H

410 RUN
'.i0f:J II-IPIJT IH'I:
5 1 0 AN= l I F IN$= " N " TH�N AM=fl
5:?0 IF At·l= 1 THEH SU=SU+B\I
5311 B\l=BV+BV
540 PETUPH
1 �i00i:i r, I M os;s.,: s) , c:, •.,1(s :,
l eW1 1€1 B\/= l
1 1 000 C,ATR B I CYCLE , 20 1
1 1 0 1 0 [,i'ITA CAP , 1 73
1 1 028 DATA TRA I M , 53
1 1 030 DATA PLAl·lE , 1 75
1 1 IHfl C•ATA HORSE, 1 28
1 :c0flfl FOP H= 1 TO 5
1 ?.:O 1 cl REAC• 0B$(1-D ., D\/0 -D
1 2f"J28 HEn N
1 :3fl80 PETUPN

Flowchart 5.8 Matching the Decimal Value

This approach obviously saves a lot of memory and time, as each array

element takes up several bytes and must be located before it can be

compared, so it is particularly useful where you are dealing with large

68

Chapter j £.1pc-r1 Sys1c-ms

amounts of information. On the other hand, it does mean that you have to
calculate the decimal equivalents of all of the bit patterns before you can
use them, and it also gives you no clues when a complete match is not
found. (Note that you cannot simply take the nearest decimal value here, as
the decimal equivalent value of each correct answer depends on its
position.) Of course you could do the calculations the hard way, but if you
enter the bit pattern as a string. 1$, then it is quite easy 10 convert it to the
equivalent decimal value DV by comparing each single character slice
M!D$(1$,N,I) with ' I ' and then adding on the value of the appropriate
bi nary digit BO if a match is found.

2flflr:1€1 l!!D= 1 , INPUT I'$

200 10 FOR N= l TO 8

20i:12VJ I F M !D'li(I 'Ii, H , 1 >=" 1 " TH Et·! [,<,,'
�DV+B[>
20fl3fl sr,�BD+BD
20040 HrnT M
20050 PR IHT DV

20061:l RUN

69

CHAPTER 6

Making Your Expert System Learn for

Itself

Although the 'expert' systems described so far will function all right, they
all require you to give them the correct rules on which to base their
decisions in advance, which can be very tedious.

However, it is possible to construct an expert program which can learn
from its mistakes and work out the decision rules for itself, provided that
you can tell it when (although not where) it goes wrong. This is obviously
an advantage if you are not altogether sure of the correct rules yourself
anyway! In this case we start out with a series of features which should
enable us to distinguish between the different objects, but without any pre­
defined yes/ no pattern of these features ('decision rule') to guide us. Instead
we use the program itself to calculate what the pattern should be.

We will work with our familiar transport example and begin by setting
up some variables. FE is the number of features to be considered (8),
FE$(n) is an array containing the names of these features. FV(n) is an array
which will hold the values which you give to each feature as input at any
particular point (0 or \), and RU(n) is an array which will hold the current
overall values of the decision rule on each feature.

10 CUSU8 1 (1�JOU
I f)0>:"l FE:8
1 00 1 ') D I M FE't(FE :, , FI/(FE :, , fi'tV FE)
lfi02f.i FCJF: t·l=l TO Fi
1 01il3fl PEFl[i FE'li(N ;
.t0fH0 rlE>n N
1 1 0fllJ DATA WHEEL�; , lrl I t·lGS , EtlG I rlE , T
YRES , RA I LS, W I NDOWS , CHA ! N , STEER I N
G
t :!000 RETURrl

Each feature is considered in turn (see Flowchart 6.1). First the current
feature value FV(n) for this cycle is set to zero, and then a 'yes/ no' input
IN$ is requested from the user on each point. If IN$ is 'Y' the feature value
element FV(N) is set to I; otherwise it remains set at zero. This will produce
a pattern which describes the object as 'O' and ' I ' in array FY(n).

71

Arrijicial lmelligence 011 the Dra,:011

Flowchart 6.1 Leaming to Distinguish Between Two Objects

60 FOi? N=! TO FE
70 FV(H)=0
80 PRINT FE'li(H ,; " ";
'30 I N'li= IHKEY'I; , IF Hl'li"" " THEN 90
H J0 PR Hff !M<t;,
1 1 0 I F INl= "Y " THEN FV(N)• l
1 21:l NE:>:T H

Before you start a decision variable DE is set to zero. This is recal­
culated as the sum of the currenr value of DE, plus each of the feature
values FV(N) entered, multiplied by the current decision rule values
RU(N),

125 DE=0
1 30 FOR N= I TO FE
1 !51:l C>E=[,E +FI/(N):fRLJ(t,i)
1 60 NE�T N
1 70 PRINT "DE• " ; DE

72

Chap!er 6 Making Your Expert System Learn for Itself

Which is which?
To start with we will consider the simplest situation where there are only
two possibilities - a bicycle or a car. Initially we make the distinction
between these quite arbitrarily by saying that if the final value of DE is
equal to or greater than O then it is a bicycle, whereas if DE is less than 0
then it is a car. It does not really matter that this is not actually true as the
system will soon correct itself. When the program has made a decision on
the basis of the value of DE it requests confirmat"ion (or otherwise) of the
result.

180 I F DE>=>E:l THEN PRINT" I S I T A
B I CYCLE " ., , INPUT I N$, GOTO 200
190 IF DE< 0 THEN PR INT " IS IT A C
AR " ; , I NPUT 1 11'1i , GIJTO 220

Three possible courses of action may be taken according to whether or not
the computer's decision was correct. If it was correct then effectively no
action is taken (a weighting variable WT is set to zero), and the program
loops back for another try. If DE was >=O but the computer was wrong,
then the weighting variable WT is set to minus one, whilst if DE was <O
but the computer was wrong then WT is set to plus one.

200 IF I N'li="Y" THEN WT=0 , GOTO 24
0
2 1 0 WT=- 1 , GOTO 240
220 I F I NS" '"/" THEN WT:0 , GIJTO 24
0
230 WT= !

The effect of the weighting variable is to modify the values in the rule array
R U(N), pulling them down when they are too high, and pulling them up
when they are too low.

24>J FOR fl= 1 TO FE
;?50 RU(t·l)=RU(fl)+F\.'(tl):tWT
?60 PR I NT RUu .l) ,
2713 HE:�T tl
280 PRHH
290 GOTO 60

The way the system operates is best seen by a demonstration. Type RUN
and then follow this sequence of entries. (Note that the punctuation has
been designed to give a screen format which clearly indicates the
relationship between your input values and the decision rule values.)

First of all enter these values:

73

Anijkial Jmelligence on 1he Dragon

WHEELS Y
RAILS N

WINGS N ENGINE N
WINDOWS N CHAIN Y

TYRES Y
STEERING Y

The program will return with a decision value DE of zero, as this is the
initial value and no modifications have yet taken place:

DE=0

As DE is O, the system assumes that this is a bicycle and asks for
confirmation, to which the answer is of course 'yes'.

IS IT A BICYCLE ? Y

The print�out of the contents of the rule array R U(n) shows that these have
not changed from zero as the correct answer was, by pure chance, obtained:

Now try entering this sequence, which describes a car:

WHEELS Y
RAILS N

WINGS N ENGINE Y
WINDOWS Y CHAIN N

TYRES Y
STEERING Y

DE is still zero, so the wrong conclusion is reached and the wrong
question is asked, to which the answer must be 'no':

DE=0
IS IT A BICYCLE ? N

Now, as a mistake was made, the decision rule is modified by subtracting
one from each value in the rule array where a 'yes' answer was given. The
contents of the rule array thus become:

-I

0

0

- I

- I

0
-I

-I

I f you once more enter the values which describe a car, the program will
come up with the correct answer:

WHEELS Y
RAILS N

DE=-5

WINGS N ENGINE Y
WINDOWS Y CHAIN N

IS IT A CAR ? Y

- I

74

0
- I

-I

0

TYRES Y
STEERING Y

-I

-I

0 0 0 0
0 0 0 0

0

Chap/a 6 Making Your Expert Sy.Hem Learn for ff self

Before you feel too pleased with yourself, try giving it the values for a
bicycle again, which it will get wrong!

WHEELS Y

RAILS N

DE;-J

IS IT A CAR ? N

WINGS N ENGINE N

WINDOWS N CHAIN Y

0
- I

- I

TYRES Y

STEERING Y

However the positive features which are common to the bicycle and the car
are now automatically increased by one, so that if you repeat this last
sequence it will now produce the correct conclusion:

WHEELS Y

RAILS N

DE;I

WINGS N ENGINE N

WINDOWS N CHAIN Y

IS IT A BICYCLE ? Y

0 -1
-1

TYRES Y

STEERING Y

The situation has now stabilised and the program will always recognise
both car and bicycle correctly every time you enter the features which
describe them:

WHEELS Y

RAILS N

DE;-2

WINGS N ENGINE Y

WINDOWS Y CHAIN N

IS IT A CAR ? Y

0
0

0

- 1

-I

TYRES Y

STEERING Y

Notice that the final value of DE for a bicycle is I, and for a car-2. If you
look at the rule array values, you will see that these correspond in both
number and position to the unique features which distinguish these objects
(CHAIN for bicycle, and ENGINE and WINDOWS for car).

75

0
0 1 0

0

0
0 1

0

0

0

0 1

Arlijicial !111elfige11c(' un lht' Dragon

A wider spectrum
Although you have now managed to teach your computer something, it is
not exactly earth·shattering for it to be able to distinguish between only
two objects. Let's expand the system to deal with a wider spectrum of
possibilities (see Flowchart 6.2). To start with we need to define the

Flowchart 6.2 Learning tht Rules for a Wider Sptctrum or Possibilities

number of objects we wish to be able to recognise 08, name them as
DATA which we READ into a new array 08$(08), change our decision
rule array into a two·dimensional form, RU(FE,08), which can hold
rules for each of the objects separately, and set up a decision array DE(n) to
hold decision values for each object.

76

Chapll.'f 6 Making Your Experr System Learn for /rsef/

H I GOSIJB 1 0000
1 0000 FE=8 • 0B:5
10010 D1 11 FES(FE) , FV(FE) , RU(FE , 0
8) , 08$(08) , DE(OB)
1 0020 FOR N=l TO FE
H .!0.30 REAC, FE'li(N)
1 8040 NEXT N
1 0050 FOR t,= 1 TO 0B
1 0060 READ 08!$(N)
1 0070 NEXT t·l
1 1 000 C•ATA WHEELS, W H IGS, EHG !t1E, T
YRES , RR I LS , W IHDOWS, CHA I H , BTEER!NG
1 1 0 1 0 DATA BI CYCLE , CAR, TRA IH , PLA
rlE., HORSE
1 2000 RETIJRH
Rather than just having a single decision variable DE, we need here to
determine a decision value for each object each time. In each cycle we must
first set DE to zero, and then zero every element in the decision array
DE(n) so that we start with a clean slate for every object.

20 DE=0
30 FOR N=l TO 08
40 DE(N)=l'I
�0 NEXT N

The values for each feature are then entered in exactly the same way as
before.

60 FOR H=l TO FE
?0 FV00=0
80 PR IHT FE'li< H) ; " ";
:30 I Nl"!NKE'/'li • I F HI$= '"' THEN 90
1 0.:J PR I NT HI$,
1 1 0 I F IH'li•"Y" THEN FV(N l• l
1 20 NEXT N

Each element oft he decision array DE(n) is now updated according to the
status of the entered values FV(n) and the contents of the appropriate rule
array element RU(n,m).

1 30 FOR H= l TO FE
1 40 FOP 11• 1 TO 0B
1 50 C•E(11)=[:,E(1-1)+F',/(H)lRIJ(H ., M)
160 NE'.,T M , H

77

Artificial lntelligem·e on the Dragon

We now need to look to see if any of the decision values for any of the
objects DE(n) are greater than or equal to the overall decision value DE.
If this is true, we set a 'top score' TS variable equal to the number of the
object producing the best match.

1 70 FOR N:1 TO 0B
1 80 IF r,E(t·P>=DE THEH DE�DEO·D ' TS=tl
191-J NEXT t·l

The best guess of the system is that 1his is 1he correct answer, so once again
it asks for confirmation, and simply returns for a new input without
making any changes if the answer was correct.

200 PRIHT "WRS I T " -' 08'li(TS J ; " " ,
2 W l t-l'li: IHKE'ft , I F J H'!;=" " THEt·l 210
215 PR ! tH It-l'li
22�J I F IN'G="',"' THEt·l 2,:,

If this was not the correct answer, the names and numbers of all the objects
are printed out and you are asked for the number of the correct answer
CR. (The limitations on CR prevent you crashing the program by
entering an illegal value.)

230 FOR t-l� 1 TO 08
240 PRl tH H, OB'lic t-D
250 NEXT N
260 PR ! tH "HHICH l•JAS I T " .,
270 I NPUT CR , I F CR< 1 OR CR>� THE
tl <'70

A check is now made to see if the decision value for each object DE(n) is
greater than or equal to the overall decision value DE and whether the
object being considered is nor the correct answer. If both of these are true
then the rules are updated again by subtracting the correct feature values
FV(n) to bias in favour of the correct answer.

280 FOR N= ! TO OB
290 PRl t-H DE(H); C,li ; CR
100 IF DE(t-D>,.r,E RHD flOCR THEM
FOR 11'• 1 TO FE , RU(M, tD==RIJ(M, N)-FV
(M) , t4EXT M
3 10 HEXT t·l

Now the correct feature values FV(n) are added to the rule array for the
correct object, 10 bias in the opposite direction.

78

Chap1er 6 Making Yu11r Experl Sy.1·1em learn for ll.1·1,//

320 FOR M=l TO FE
330 RU(11 , Cli')=PU(11., C:P)+FI/(M)
340 HrnT M

Finally the statuses of the rule arrays are printed out so that you can see
what is happening.

:3'.;0 FOR M= 1 TO 08
%0 FO�: N�l TO FE
370 PR I HT RUn l, 11) ;
:380 HEXT H
39� PR UIT
400 HEXT t1
4 1 0 GOTO :�0

Once again a demonstration is the best way to understand what is
happening so enter the following sequence:

WHEELS Y
RAILS N

WINGS N ENGINE N
WINDOWS N CHAIN Y

TYRES Y
STEERING Y

The program wit! come back with the erroneous conclusion that it was a
horse, so you must tell it that this was wrong. when it will ask you for the
correct answer (bicycle ::;; I):

WAS IT HORSE N

BICYCLE
CAR
TRAIN

4 PLANE
5 HORSE

WHICH WAS IT 1

The statuses of the various decision and rule arrays are now printed out for
your information (note that the labels shown here are not included on the
screen).

(DE(N)) (DE) (CR)
0 0 1
0 0
0 0
0
0

79

1
1
3

1
1
1
10

0

Artificial lmelligenre on 1he Druxon

0 0 0 I (bicycle)
0 0 -I 0 0 (car)
0 0 - I 0 0 (train)

-1

-I

-I

-I

0 0 - I 0 0 (plane)
0 0 -I 0 0

- I

- 1

- 1

- I

- 1

- I

- 1

- 1 (horse)

A B C D E F G H

(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=Chain H=Steering)

If you look closely you will see that the features which have caused
alterations in the rule arrays are wheels. tyres, chain and steering - all
features which we defined as part of a bicycle and not found in a horse. In
addition. you will see tha1 the values for 1hese features in the bicycle rule
array are now all plus one. whilst the values for these features for all the
other objects are now all minus one.

Now give it the features of a car, which it will think a bicycle. and then
correct it. Notice that the rule arrays for bicycle and car are now amended to
take into account the new information.

WHEELS Y

RAILS N

WINGS N ENGINE Y

WINDOWS Y CHAIN N

WAS IT BICYCLE N

BICYCLE

CAR

TRAIN

PLANE

HORSE

WHICH WAS IT 2

3 3

-3

-I
-I

-I

-1

I

0
0
0

80

0

-I

- I

- I

0 -1 1

0 - 1
0 -I

0 -I

0 -1

TYRES Y

STEERING Y

0 (bicycle)
0 (car)

-I (train)
-I (plane)
- I (horse)

01 1 1

1
2
3
4
5

3
3
3
3

2
2
2
2
2

-3

0
0

0
0
0
0
0

0
0
0
0

1

-3
-3

Chapter 6 Making Your Expert System Learn for Itsel
f

A B

(A=wheels
E=rails

C D E

B=wings
F=windows

F G

C=engine
G=chain

H

D=tyres
H=steering)

Next give it a plane, which it decides is a car, and correct it again.

WHEELS Y
RAILS N

WAS IT CAR N

BICYCLE
CAR
TRAIN

4 PLANE
5 HORSE

WINGS Y ENGINE Y
WINDOWS Y CHAIN N

WHICH WAS IT 4

And now a train, which it still gets wrong!

WHEELS Y
RAILS N

WINGS N ENGINE Y
WINDOWS Y CHAIN N

WAS IT PLANE N

BICYCLE
CAR
TRAIN

4 PLANE
5 HORSE

WHICH WAS IT 3

And finally a horse. which comes out as a plane!

WHEELS N
RAILS N

WINGS N ENGINE N
WINDOWS N CHAIN N

WAS IT PLANE N

BICYCLE
CAR

TYRES Y
STEERING Y

TYRES N
STEERING N

TYRES N
STEERING Y

8 1

1
2
3

1
2
3

1
2

Artificiol lnttlligence on 1he Dragon

TRAIN
4 PLANE
5 HORSE

WHICH WAS IT 5

If you continue to feed your expert information, eventually it will get the
right answer every time. How long this will take depends upon the extent of
the differences between the features of the objects, and on the order in
which the objects are presented to the expert. Be warned that it can take a
long time before it becomes infallible. Here is one sequence which
eventually came out right every time.

plane (train)
car (YES)

horse (YES)
plane (car)
car (YES)
car (YES)
bicycle (YES)
bicycle (YES)
plane (car)
car (YES)
bicycle (car)
train (YES)

car (plane)
plane (car)
plane (bicycle)
plane (car)
plane (car)
plane (YES)
train (car)
car (plane)
plane (YES)
plane (YES)
car (YES)
horse (YES)

bicycle (YES)
plane (YES)
car (plane)
car (plane)
plane (YES)
horse (YES)
train (YES)
car (YES)
car (plane)
car (YES)
plane (YES)
bicycle (YES)

To see the final state of the rule array when the ultimate state is reached,
you can stop the program and then type GOTO 350 as a direct command.
As the final scale of values ranges from +6 to -2, you should not be
surprised that it took a long time to get there.

-I 0 -2 3 0 (bicycle)
-I 4 - I -2 0 (car)
0 -I I -2 2 I - I -2 (train)

-2 6 0 -I 0 -2 -2 (plane)
-I 0 0 -I 0 0 -I 0 (horse)
A B C D E F G H

(A=wheels B=wings C=engine D=tyres
E=rails F=windows G=chain H=steering)

Of course, in a real application of such an expert system you could feed ita

82

3

1 1
1 1

0
0

0

Chap/er 6 Making Your Experi S_rstem learn for 11.\·e(f

mass of collected information and conclusions on a subject area and then
leave it alone to digest this and to come up with the rules in its own good
time. As these rules are stored in arrays you could easily write a routine to
save these for re-use later.

83

CHAPTER 7

Fuzzy Matching

Computers are totally logical but our own memory banks are much more
unreliable, which can lead to problems when you are trying to recover
information on a particular subject. For example, English is a very variable
language and there are frequently alternative spellings of the same (or very
similar) surnames, which can cause difficulties.

One way around this problem is to try to match the sound of the word,
rather than the actual letters in it, by means of 'Soundex Coding', which
was originally developed to assist processing of the 1890 census in the USA.
This method of coding ensures 1hat similar-sounding words have almost
the same code sequence.

The rules for coding a word are as follows:

I) Always retain the first letter of t he word as the first character of the code.

From the second letter onward:

2) Ignore vowels (a, e. i, o, u).
3) Ignore the letters w. y, q and h.
4) Ignore punctuation marks.
5) Code the other letters with the values 1-6 as follows:

Letters

bfpv
cgjksxz
di
I

Code

6) Where adjacent letters have the same code only the first one is retainec
7) If length of code is greater than four characters then take first four only.
8) If length of code is less than four characters then pad out to four
characters with zeros.

85

1
2

4
5
6

mn
r

3

Ar1ificial ln1e//igenre 011 11,,, Dragon

To make this clear here are some examples of Soundex Coded names:

BRAIN - 8650

(8 is retained. R is 6, A and I are dropped, N is 5 and a zero is added to pad
out the code.)

CUNNINGHAM - C552

(C is retained, U is dropped, both Nsare represented by the single code 5, I is
dropped, the third N is represented by 5, G is 2, H and A are dropped, and
M is coded as 5 - but the resulting code (C5525) is truncated to four
characters.)

GORE - G600

(G is retained, 0 is dropped, R is 6, E is dropped and zeros are added to pad
the code.)

IRELAND - 1645

(I is retained, R is 6, E is dropped, L is 4, A is dropped, N is 5 and D is 3-
but the resulting code (16453) is truncated to four characters.)

SCOT - S230

(S is retained, C is 2, 0 is dropped, T is 3 and zero is added to pad the code.)
If your name is full of vowels and other rejected letters, then you will find

that your code is somewhat abbreviated!

HEYHOE - H000

(H is retained, all the other letters are rejected (!). and the code is filled up
with zeros.)

Coding routine
To save all that brainwork. let's develop a program which allows you to
input a word in English and output it in Soundex Code (see Flowchart
7.1). The first thing to do is to jump to a set-up routine which reads each
group of the retained letters into one element of a Soundex Code string
array SC$(n). (Note that the letters are arranged so that they are in the
array element corresponding to their code value.)

86

Chapter 7 Fuzz_r Matching

Flowchart 7.1 Producing a Soundo: Code

10 GOSUB 10000
10000 D IM SC'li(6 l
1 1 000 tiATA BFP\/, CG.JKS�:z , DT , L , MH ,R
12000 FOR H= I TO 6
120 10 READ SC'li(H)
1 2020 t·IEXT H
1 3000 RETURM

We can now input the word to be converted, IN$, and, to begin with,

make the coded version of this, COS, the first letter of that word

(following the first rule above).

87

F

Arr/Iida! !melligena on !he Dragon

1 00 IHPUT I N'li
1 1 0 CO'li=LEFH;(It4'1i, 1)

We now need to check the other letters of the word, 2 TO LEN(IN$), in turn
after first making a temporary string TM$ equal to the current letter to be
translated.

1 20 FOR H"2 TO LEH(W!li)
1 30 TM'li.,MIM(Hlt , H, 1 l

As conversion to the code numbers will be required at various points in the
final problem, we will set up this process as a subroutine at line 1000.

1 40 GOSUB 1000

We have to check TM$ against each individual letter in each group of
letters SC$(n) to find a match. To check each letter group, we have to go
round six times, making a search string SE$ the current Soundex Code
group, and using INSTR to check each letter in the group against TM$
in turn.

1 000 FOR P=l TO 6
1010 SE'li�SC'li(P)
1 020 :3P= I NSTRC 1 , SE!li , Tr1'1i)

When the INSTR check has been made, we have to determine whether a
match has been found to any of the Soundex groups, and if so, to which
group. If no match is found then SP will be set to zero. If a match is found
then SP will be set to M which will point to the value of the code group
matched.

If a match is found, SP>0, then we convert the numeric value of the loop
scanning the code groups P to a string TM$ which replaces our original
temporary string. (The STR$ command converts a number into a string,
but we also need to use RIGHT$ as STR$ automatically adds a space on to
the front of the number string.)

1.•�1�:-0 I F ::; F >��I THEt ! rr· l·t · ·,F: T i:�:HTr.t.·.-: '?TP
•!i F' > .. 1 ::, F'E: fl.J : I I

If no match is found in that group, we have to check che next group.

1 040 HD'.T P

If no match is found at all, then TM$ must contain one of the characters to

88

Chapter 7 Fu:zy Ma/Ching

be ignored. So we reset TM$ empty [$="'1 and RETU RN.

1 1-350 TM'ti= 11 11

1 060 PETI.JRH

We can now make the coded string CO$ equal to the original coded string
plus the newly converted character TM$.

1 70 CO$=CO$+TM$

Now we loop back to deal with the next character in IN$.

1 80 HEXT H

When the end or IN$ is reached. we print out the input IN$ and the entire
coded string CO$ before going back to 100 for another input.

?. 11:l PP J HT , PP!t-H "HRME " , "CCIC:•E " , PR
INT rns, CO'$
320 GOTO 100

If you input the name STEVEN you will now get the code S315 which is
correct. However. ir you try BRAIN or CUNNINGHAM you will get the
codes 865 and C55525 respectively. The code for BRAIN is 100 short and
needs padding out with zeros, and the code for CUNNINGHAM is too
long and the same codes are repeated one after another for the letter N.

Dealing with the details
To solve the problem or 1he repetition or the same code for adjacent letters.
we need to keep a record or the last temporary string LT$. We need 10 make
LT$ the code of the first character in IN$ to start with, so that the initial
letter is not repeated. As we go through the FOR-NEXT loop. we must
compare LT$ with TM$, and if they are the same we must not add TM$ to
CO$. Otherwise we need 10 make L TS the latest TM$.

1 1 0 Tl1'$"'LEFT'$(Hl'li, 1) , CO'li=TM$, GOS
UB 1 000 , l.Tl=TM'li
1 50 J F Tl1$=L.T'li THEM mrn t c:�1
1 60 L n=TM'li
Now we can sort out the problem oft he code being too short. First of all we
check the length of the string LEN(C0$)<4. If it is too short, we add three
zeros on to the end and then use LEFT$ to cut the string back down to the
correct size (four characters).

89

Ariificial lntellitence on the Dragun

�·�TCJl�N:�
l su&RDUTINEI
L __ __ J

L_ _ _ _ _ _ _ _ _ _ _ J

�-�T��N:�
•suSROl!flNE I
�-- __ J

Flowcharl 7.2 Dealing with lhe Details

1 90 I F LEfl(CO'$)<4 THEN CO$=CO$+"
000" , CO'li=LEFH(CO'li , 4)

Finally, if the string is too long then we cut it down to size with
L EFT$(C0$,4) again.

200 I F l.ENO: CO'$))4 THEM CO!lo=LEFT'li
(CO'li , 4)

90

Chapter 7 FuzzJ· Matching

Matchmaking
Now that we have a reliable method of producing the Soundex
Codes, let's give it something to work on. The first task is to read a
list of names out of DATA statements into a name string array NA$(n).
Our demonstration list only consists of eighteen names - if you want
more, a quick flick through your local telephone directory should soon
solve that problem! Note that the number of words is also stored as NW.

10010 t·lW= 1 7 , D I M NR'li<N�D
1 HJ 10 DATA ABRAHAM , ABRAHRl1S , ABRA
MS , ADAM, A[iAMS, ADDAMS, ADAMSON, ALA
t·l., ALLAN, ALL.EH
1 1 020 DATA ANTHAHY, AHTHOH\' , At·lTOH
'l' . , At·ITROBUS, APPERLEY ., APPtEBEE, APP
LF.B'i' , APPLEFORD
L2r:J30 FOP N=0 TO 1 7
1 2040 READ NA't(N)
1 2050 NE�:T H

The whole idea of matching with Soundex Codes relies on the fact that you
use the Soundex Code to make the match before printing the possible
words. We therefore have to find the codes for each of the names from the
DATA and put these codes into an equivalent string array NC$(n). The
routine to find the Soundex Code is virtually identical to the one used to
find the code of an input, as described above.

!l'Jlci?.0 [l I M HC'll< HW)
1 2060 PR I NT , PRINT "NAME " , " GODE " ,
PRHlT
12070 FOR Q,:0 TO NW
1 2080 PR HIT NA'llr n) ,
1 2090 TM'S=LEFHI(NR!IKQ) , 1) , COS=TM
!fi · GOSIJB 1 000 , LTS,;TMI
1 2 1 00 FOR N=2 TO LEW HA'li< Q))
1 2 1 1 0 TM'll=M!D'S(HA'liC Q) , N, 1)
1 2 1 20 r.osue 1000
121 :30 I F TMS=L T'li THEH t·lE�n N , GOT
a 1 2 1 70
1 2 1 40 LH/=TMS
1 2 1 50 cos�cos+TM'li
1 2 1 60 NEXT N
1 2 1 7-i!I I F LEN< CO'I >< 4 THEN CO$=CO$
+ " 000" , COS,,LEFHl(COS , 4)

9 1

Ar1ijkia/ Intelligence on the Dra,<on

1 2 1 80 IF LEW CO$))4 THrn CO$=LEF
U< COi, 4)
1 2 1 90 PRIHT CD'II
1 2200 NCI< fJ)=COI
1 22 1 0 NEXT (:1

If you RUN this now, you will see all the codes for the DATA produced
before the input request.

NAME CODE

ABRAHAM Al65
ABRAHAMS Al65
ABRAMS A l 65
ADAM A350
ADAMS A352
ADDAMS A352
ADAMSON A352
ALAN A450
ALLAN A450
ALLEN A450
ANTHANY A535
ANTHONY A535
ANTONY A535
ANTROBUS A536
APPERLEY A l 64
APPLEBE E A l 41
APPLEBY Al41
APPLEFORD Al41

The only thing we need to do now is to find which codes o f these names
match the code of your input and then to print out these names with a
FOR-NEXT loop.

?41'J PR INT
250 FOR tM'l TO HW
260 IF CO'J,,flC'liUD THEM PRIHT HR'li
(H), HC'II(H)
270 HEXT H

This will only print words with exactly matching Soundex Codes. For

92

Chap/er 7 Fuuy Maffhing

example, if you try entering the name APPLEBE you will get the following
response:

? APPLEBE

NAME
APPLE BE

APPLEBEE
APPLEBY
APPLEFORD

CODE
Al4 1

Al41
Al4 1
Al41

Although APPLEBE (one E at the end!) is not present in the DATA, we
have found APPLEBEE and APPLEBY, as well as APPLEFORD (where
the interesting sound at the end has been chopped off).

Flowchart 7.3 Partial Matching

93

Ar1ificiul /ntelligem·e un 1he Dragon

Partial matching
Notice that on the other hand APPERLEY has been rejected, even though
it sounds quite similar at first. It would therefore be useful if we could also
print out partia l matches.

This can easily be done by adding an extra FOR-NEXT loop, which
compares a decreasing section of the input LEFT$(C0$,M) with
decreasing lengths of the stored codes LEFT$(C$(N),M) (see Flowchart
7.3).

230 FOR M=4 TO 1 STEP - 1
240 PR HIT · PR I NT M ; "CHARACTERS MA
TCH" , PR HH
260 IF LEFH(CO$, t1)=l.EFn< NC$(N)
, M) THEN PRI NT flA!liOD , NC!li(N)
280 PR HIT , PR !NT "PRESS KliY TO CO
HTlNUE"
290 l H'li"' IHKE'l'S • IF I N$� " " THEN 29
0
300 PRINT , PR I I-H
3 1 0 NEXT M

If you now try APPLE BE you can see the whole range of possibilities.

? APPLEBE

NAME
APPLEBE

CODE
Al41

4 CHARACTERS MATCH
APPLEBEE A 14 1
APPLEBY Al 41
APPLEFORD Al41
PRESS KEY TO CONTINUE

3 CHARACTERS MATCH
APPLEBEE A 14 1
APPLEBY Al41
APPLEFORD Al41
PRESS KEY TO CONTINUE

2 CHARACTERS MATCH
ABRAHAM A 165
ABRA HAMS Al65
ABRAMS Al65
APPERLEY AIM

94

APPLEBEE Al4 1

APPLEBY Al4 1

APPLEFORD Al4 1

PRESS KEY TO CONTINUE

1 CHARACTERS MATCH

ABRAHAM A165

ABRAHAMS Al65

ABRAMS Al65

ADAM A350

ADAMS A352

ADDAMS AJ52

ADAMSON A352

ALAN A450
ALLAN A450
ALLEN A450

A NTH ANY A535

ANTHONY A535

ANTONY A535

ANTROBUS An6

APPERLEY Al64

APPLEBEE Al4 1

APPLEBY A l 4 I

APPLEFORD Al4 1

PRESS KEY TO CONTINUE

Chap1er 7 F11::y Marching

95

CHAPTER 8

Recognising Shapes

We normally recognise objects using our senses of sight, sound, taste and
feel, whereas of course our basic computer can only obtain information
through the keyboard. Whilst it is possible to produce sensors which can be
interfaced with your machine to give it another view of the outside world,
constructing these requires a reasonable amount of electronic and
mechanical knowledge and skill. We wilt make do instead with a simulation
of the action of a light sensor to illustrate how shapes can be recognised.

Let us think for a stan about three simple shapes - a vertical line, a
square, and a right·angled triangle.

We can recognise these shapes by looking at the pattern they make on an
imaginary grid and deciding whether or not there is a point set at each X
and Y coordinate.

In the case or a line only the first X coordinate is used, but all of the Y
coordinates. A square is a little more complicated, as all the X
coordinates on Y rows I and 8 are set, and from Y rows 2 to 7 only the first
and last X points are set. Finally, a triangle is even more complica1ed, as
the slope is produced by incrementing the X axis each time

Table 8.1 Dttimal Values of Shapes Described in Binary Form

Y row line square triangle
1 255
2 J

4

5 17
6]]

65
255 255

One obvious way to describe these particular figures would be to
represent each point by a single bit and to produce a decimal value for each
row, in the same way as we did before when we were looking at expert
systems (see Table 8.1). In fact this type of approach is used to produce the
characters which you see on your screen display, the formats for which are

97

3

7
8

1
1
1
1
1
1

1

1

5
9

1 29
1 29
1 29
1 29
1 29
1 291

Artijiciol lntelligem·e on 1he Dragon

stored in memory in just this form. For example Figure 8.1 shows how the
letter 'A' is built up.

There are now machines available(Optica! Character Readers) which can
rever�e this process. They actually ·read' a printed page by scanning the
paper in a grid pattern and measuring whether or not light is reflected at
particular coordinates.

Figure 8.1 Forming the Leifer "A'

What they actually take in will be a pattern of 'yes' and ·no' for each
coordinate. and of course this must then be decoded and compared with the
patterns for known shapes. The most obvious way to make this comparison
would be lO consider every point in turn as a binary digit and then to
convert each row back to a decimal value which could be compared with a
table of known values. However this has the disadvantage that we must
actually check every individual point on the grid (64 points).

A branching short cut
A quicker approach relies on the fact that each character can actually be
detected by looking at only a much smaller number of critical features of
the pattern. For example, Figure 8.2 gives a decision tree which will find all

98

2. 3 + 5 6

Figurt 8.2a Decision Trtt for Alphabet

:g

1

g
IS 20 21 22 23

1-"igurt 8.2b

24

Chap1er 8 Recognising Shapes

the capital letters of the alphabet using only 1 2 points (see Figure 8.3), and
it is not even necessary to check all 1 2 in any particular case. If you follow
each of the routes, you will see that the maximum number of steps to be

X

2 3 4 5

X X X
X X

3 X

y 4 X X

5 X X

6 X

X

Figure 8.3 Poin1s Used in Decision Tftt

foUowed is seven, and that most letters are found in less than five steps
(Table 8.2). This must obviously be quicker 1han comparing all 64 points!

Table 8.2 Numbers of Steps Required for Recognition of Each Character

3 steps - I, D
4 steps - L, J, C, G, 0, W
5 steps - S, A, Q, R, T, F, U, space
6 steps - P, V, Y, H
7 steps - B, M, N, E, K, X, Z

1 0 1

Artijkial Jme/Jigencr on 1hr Dragon

To demonstrate how this approach works, we will simulate the action of
the scanning head by producing a grid on the screen, on which you can
construct characters.

The text screen start address 1 024 is defined as a variable TS as it is used
frequently. The screen is cleared and a red area 6 X 8 blocks is set up in the
top lefthand corner by POKEing CHR$(191). A yellow (CHR$(159)) 5X 7
grid is then superimposed on this to mark the actual working area (of
course there must be a margin around the edge so that characters do not
merge).

1 f.l GOSUB 10000
1 0000 TS: 1024
1 2000 CLS
1 2010 FOR tl= l TO 1 0
1 2020 PRHH
1 2030 HE)(T H
1 :31000 FOR X:0 TO 6
131310 FOR)'"1' TO 8
13020 POKE TS+X+('!:t.32), 191
13030 HEXT '(
13040 t�EXT X
130:50 FOR)(= 1 TO 5
13060 FOR Y=l TO 7
1]i370 POKE TS+X+('f:f32), 159
13080 HEXT '!, >(
13090 X=l ; Y=l
13100 RETURN

flashing cursor is now produced to show your position. CP is the current
position on the text screen, TS, the current colour of which is saved as
CC by PEEKing this position. A different coloured block CC+32 is
POKEd into place and then the original colour CC POK Ed back, so that
there is no lasting effect. If no key is pressed, the program loops back
and checks again: when a key is pressed, the ASCII value of A$ is taken
as A.

2Pl A'li= IHKEY1i

3fJ P=TS+XH '(*32) , CC=PEEK(P) , POKE
P , CC+� , POKE P , CC

40 l F A'li='"' THEN 20 ELSE A=ASC(A
'$)

The X and Y coordinates are updated according to movement of the
cursor keys (A=9, 8, 10 or 94), and if the spacebar (A=32) is pressed the
colour of the current position is set to dark blue, CHR$(175). If you make
a mistake,
102

Chaprer 8 Recognising Shapes

pressing 'X' erases the current position by resetting the colour to yellow,
CHR$(159), or the CLEAR key (A== 12) jumps to the set up routine and
erases all the current grid. Pressing RETURN (A==l3) leads to the
decoding routine, or else the program loops back to the keycheck.

50 IF A:9 THEH X=X+l
60 IF A=8 THEN X=X-1
70 IF A=1 0 THEN "!='(+1
90 IF A=94 THEH "t=Y- 1
90 IF A=32 THEN POKE TS+X+(Y*32)
i l 75
Hll3 IF Rl="X" THEH POKE TS+X+(Yt
32) , 159
1 10 IF R,. 12 THEN GOSIJB 13000
120 I F A= 13 THEN 200'1
130 IF X< l THEN Xal
140 IF X>5 THEN X=5
150 IF '/< 1 THEN Y=l
160 IF Y>7 THEH Y=7
170 GOTO 20

limits must be set to prevent the cursor wandering off the 5 X 7 grid area.

1 30
1 40
1 50
160

I F
1 F
I F
I F

'.·<< 1 THEM X=1
>�>5 THEil X=5
\'< t THEM Y=1
Y>7 THEN Y=7

The decision tree is held in a series of linked arrays where NB is the number
of branches, LE$(n) holds the names of the letters, C l (n) the X coordinate
to be checked next, C2(n) the Y coordinate to be checked next, N(n) the
next element to use if theansweris'no',and Y(n)the nextelementtouseifthe
answer is 'yes'.

l 111100 t·l8�53
1 10 10 DIM LE$(N8) , C ! C N8) , C2(NB > ,
W t�B) , W t�8)
1 1 020 FO�' t·l= 1 TD l�E'
1 1 030 READ LE$(N l , C ! (N) , C2(N) , N(
fD , '

l

(fO
1 HH0 llEXT N

The best way to enter the DATA is probably as 53 separate lines (one for

103

Artifida/ /melligtnce on the Dragon

each branch point). as this makes it easy to enter and to edit out any
mistakes.

14010 C,ATA , L 1. , :? , 1 9
1 4\);�0 DATA ., 1 , 5 J :3., 1 0
1 4030 ORTA 1 3 , 2 ., 4 ., 9
1 4040 DATA , 5 , L 5 J 8
1 4050 DATA ., 3 J L 6 , 7
1 4060 DATA
1 4070 C•RTR

ug11 ., J 1 .•

1 4080 r,RTA ll ,j
l 1 ·' l l J

1 4090 [)ATA II I u J ·' J)

1 4 H10 DRrn , �L 4 , 1 1 , 1 4
1 4 1 11:t C•ATR , 5 , 5 ., 1 2 , 1 :3
1 4 1 2FJ DATA uc ,1 , J 1 _.

1 4 1 :30 ORTA u c:; 11 _, , 1 ,

1 4 1 40 DATA , 5 ., 7 , 1 8 ;. 1 5
1 4 1 50 DATA , 2 , 4 , 1 7 , 1 6
1 4 1 611 DATA

u Au , , , 1

1 4 1 70 DATA
U (J ll

l J l l

1 4 180 DATA
" 0 1 1

J J J >

1 4 1 90 r,ATA , 5 , 1 .. 20., 29
1 4200 DATA , 5 , 4 , 21) 28
142 10 DATA , 5 .. 3 1 27 , 22
1 4220 DATA , 5 , 7 , 23 -, 26
14230 DATA , 5 , 5, 24, 25
1 4240 C>ATA 11p 11 ·' J J ,

1 42�0 DATA 1 1 8 11
., J J 1

1 4260 DATA
H f;.1 1 1 J J J J

1 4270 DATA I I L I I
J ·' ·' J

1 4?.80 DATA 1 1 () 11 ., ·' J J

1 4290 DATA J 5 ., 7 > 45·., 30

1 4300 DATA , "2 , 6 1 31 , 44
1 43 1 0 C•ATA) 51 31 32 ., 35'
1 4320 DATA , 1 , 5 , 33 1 36
1 4330 DATA > 3 , l J .341 :35
1 4340 DATA H X U J J J J

1 4350 DATA
,,

2 11 , , , J

1 4360 DATA , 4, 2 ., 38, 37
14370 DATA "Ku , , > ,
1 43813 DATA 11

E
11 J , .' I

1 4:390 DATA , 2 , 4 , 40 , 43
1 4400 DATA , 4 , 2, 42 , 4 1
14410 DATA U M " , J J ·'

104

Clwptu 8 Ri'co1{11i.1·ing Shapes

1 4420 DATA " N" , , , ,
1 4430 DATA "H" , , , .,
1 4440 DATA "W" , , , ,
1 4450 DATA , 3 , L 46 , 5 1
1 4460 DATA , 1 , 5 , 47 , 50
1 4470 DATA , 2 , 4 , 48 , 49
1 4480 DATA "Y" , , , ,
1 4490 DATA "V" , , , ,
1 4500 DATA "U" , , , ,
1 45 1 0 DATA , 1 , 5 , 52 , 53
1 4520 DATA "T " , , , ,
1 4531':1 DATA "F " , , , .,

If you are more confident (or are trying to save space) then all the DATA
can be condensed on to eight rather unreadable lines which arc O K for
those who arc good at counting commas. but very difficult to edit.

1 40 1 0 ()ATA , 1 , L 2 , 1 9 ., , L 5 , 3 , 1 0 ., ,
3 , 2, 4 ·' 9, , 5 ., 1 ., 5, 8 ., ·' 3., 1 , 6 , ? ·' 11 11 , , ·'

> J
li �: 11 J J J J ,o

11 ,j ll ·' J J .I .I 11 1 11 I .I / > ·' •' �I .! 4 .I 1
1 , 1 4 .. _, 5 , 5 , 1 2 , 1 3 , 1 1C 11 • .• . , , , 11 G " , , .,
, 5 , 7 , 1 8 , 1 5 , , , 2 , 4 > 1 7 , 1 6 , 11 A 11

, , , , ·'
11

(.'J " > J J J J 11 0 11 J ·' , > ·' J 5, 1 ·' 20, 29 ., > 5 , 4 , ;?
1 , ;�8 , ·' 5 ·' 3 ·' 27, 22
1 4220 DATA , 5 , 7 , 23 , 26 , , � . 5 , 24 , 25
, 11 p 11 , , _, ., 1 1 18 11 , _, , _, , 11 p u , ·' , , .• " L u 1 1 _ , ·'

J 11 () 1 1 , ' ·' ·' ·' , 5 , 7 , 45 , 30 ., ., 2 , 6 , 3 1 , 44 , ·'
5 , 3 , 32 , 39, , 1 , 5 , 32 , 36, , 3 , 1 , 34 , 35 ,
1' X'1 , , , , , 1' ?'' , , , , , , 4 , 2 , 38 , 37 , 1' K '1 , ,
, . , '' E 11 , , , , , , 2 , 4 , 40 , 43, , 4 , 2 , 42 , 4 1
J l lt,1 11 J ·' J ·'
1 442i.?I DATPf 11 N 11 ·' ·' ·' ·' , 11 H 11 , ·' , , ·' 11 w1

·' ·'

J J J J 3 , l , 46 , 5 1 , , l , 5 , 47 , 50 , , 2 , 4 , 48
, 49 , 11 '(11 ., ·' , , ·' 11 V 1 1 , ·' , ·' , 11IJ 11 , , ·' , , , 1 , 5
, 52 .. 53 , 11 T " , .. , , , 1 1F 11 , , , ,

To check the design produced against the patterns available (sec Flowchart
8.1). the array pointer AP is first set to I so that the search is started from
the beginning. X and Y coordinates arc read from the Cl (AP) and C2(AP)
elements pointed to. and the last position LP pointer set equal to the
current array pointer AP.

The point colour PC at these coordinates is determined by PEEK(TS+
X+(Y*32)). If this is 175 then the point has been set and the 'yes· pointer
Y(AP) must be followed. If any other value is found then the 'no· pointer

105

A rtificial lntelfiv:nn' on 1/11' Dragon

Flowchart 8.1 Character Recognition

N(AP) is followed. In either case a check is made to see whether the element
pointed to contains a zero (indicating the u ltimate end of a branch), which
shows that a character has been found. If so, the appropriate letter
LE$(LP) is printed, and the display is held until a key is pressed, when a
new cycle is initiated. As long as a higher value than zero is found then this
mus! be another branch point and so the program loops back to 2010 and
picks up the new values of Cl (AP) and C2(AP).

To allow you to see which points have been checked, these are set to
different colours as they are found. 'Yes' and 'no' branches can be
distinguished, as tested points which were not set (PC= 175) will now be
cyan (23 9+ 16), whilst points which were not set will be magenta (23 9+0).
Any points which were set but no1 tested will remain blue.

?.000 RP=1

106

Chapter 8 Recovusing Shape.t

;?i;J 1 P.I :�=C 1 (AP l • Y=C2(AP) • LPcAP
213<!0 PC=PEEK(TS+X+< Y:t32 l)
2H30 I F PC= 1 75 THEH AP=Y(AP) • GOT
0 21350
2040 AP=H(AP)
2051!! IF APc0 THEfl 207fi
21360 POKE TS+X+(Y*32) , (;239+(16:t.(
PC= ! 75))) • GOTO 20 1 0
2070 PPIHT LE'$(L P) ;
2080 A'$e Hlr'.EY'S • I F A'I<= " " THEH 208
0
2090 GOSIJB 1 3080 • GOTO 20

I f you want to see which part of the tree was actually followed, then add
these modifications which will print out the sequence followed asa column
of numbers to the right of the grid. The blanking string BLS defined is used
for partial screen clearance.

2005 PR UIT R 1 6 , "AP " ., , L I = !
2055 PR I NT @ ((L I:t.32)+16) , AP · L J =
L. I + !
2.195 FOP H= l T O 1 0 • PRIMT f,I (<Mt.3
2 H 1 6), Bl.'$, HEXT t·l
10005 BLI""

The disadvantage of this more rapid method. of only checking critical
points, is that it will make a mistaken match if it encounters a shape that is
not on the tree, whereas if a ll points are checked then no match will be
found in such a case.

Early Optical Character Readers would only accept a single particular
typeface, but the latest machines not only accept different styles of type, but
actually learn 1he recogni1ion rules for themselves by means of a built·in
expert system. You teach these by showing them a few pages of text and
then entering these same charac1ers via the keyboard. However we feel that
it will still be a long time before anyone can produce a machine that can
read OUR handwriting!

107

CHAPTER 9

An Intelligent Teacher

Another place where Artificial Intelligence can be particularly useful is in
teaching programs. It is all very well having a program which tests a
student's knowledge at random, but this is not how a real human teacher
works. As well as asking the questions, he keeps an eye on the progress of the
students, increases the d ifficulty of the questions as experience increases,
and tests them more rigorously on the types of problems with which they are
having difficulties. For example, if a child takes a test involving addition,
subtraction, multiplication, and division, but only gets the division-type
questions wrong, then it follows that the child should be given more
division questions in the future to provide more practice.

Let's have a look at how we can introduce these 'human' qualities into a
teaching program.

Questions and answers
We need to create random numbers to be used in the first question,
which we will make addition. Using INT(RND(0)*I0) will give numbers
between 0 and 9.

20 A= I t-ff(Rt,ffo(FJ)l 1 '1 ;,
30 8" HH(PHll(0 ll 1 0)

The computer adds these together and then goes on to an input and
checking subroutine at !000.

40 C=AfB , GOSUB 1O0r:J

First, the routine must print the question and input your answer IP.

1 1300 PR J tH fL " + " , 8 ., " ·• " ;
\ 0 1v.l I MPIJT I P

Your answer must then be checked. If the program answer C i s the same as
your answer, then CORRECT is printed and the routine returns 10 line 40.
Otherwise WRONG is printed followed by the correct answer.

10 9

Arrijidal h11t'lligMce 011 1he Dragon

r n213 I F C=!F' THEM PR ! tH " CORRECT
" • PETURN
1 030 pj;• JN T "•JROHG, co�:RECT Af�S.JE
R WAS " ; C
1 040 PETURN

The other three subjects (subtraction, multiplication, and division) can be
easily dealt with in the same way ifwe replace the'+' sign in line IO00 by a
sign string SG$, which we can set to the appropriate character at the time.
As INT(RND(0)* I 0) is common to all the calculations, we might as well
define this as a function R.

1 5 DEF F,NRO O = ItlT(RN[)(>3 ,:t \ 0 ::,
20 A=FHR(Al))
30 B=FHR(AD)
40 SGt= " + " • C=A+B • GOSUB 1 000
50 R=FHR(SU)
60 B=FNR(SU)
?r:J SG'S= " - " • C=R-B • GOSUB 1 0130
80 A"'FNR(MU)
90 B=FNR< MU -,
1 00 SGt" "*" · C=AtB • GOSUB 1 0r:10
1 1 0 A=Ft·JR([) I)
1 20 B=FtlR< D I)
1 30 SG'S=" /" • C=A/8 • c;osuB 1 001"1
1 01"10 PR! t-H A .: SG'li.• P ., " •• " ;

Final ly we jump back to line 20 to ask more questions.

140 CiOTO 20

Dividing by zero!
As it stands, the program can crash if B happens to be zero when a division
is selected. This can be simply fixed by always adding one on to B in this
case:

1 20 B=FHR(D !)+!

Deleting decimals
We are using integer variables to keep us to round numbers, but of course a

I 1 0

Chapter 9 An lt11ellig1•111 Tead1u

division may still produce a fractional answer. eg:

3 / 2 = 1.5

To avoid producing decimals. A needs to bea multiple of B. To achieve this
we calculate B first and make A equal to B multiplied by a random number
between 0 and 10.

I W B�Ft·lR(Co l)+ 1
1 2fJ R:;,!HF FHR(D I)):t8

Keeping a score
Now that we have the test itself working. we need to consider how to keep a
score. The simplest thing is to increment a tries variable TR each time the
subroutine at 1000 is used, and to increment a score variable SC each time a
correct answer is obtained.

1 0 1 0 ! HPUT IP • TR=TR+I
l C:<W IF C=IP THEH • PRHlT "CORRECT
" , SC=SC+ 1 , GOTO 1 04>'!
H J40 PRIHT " '>'OUR SCWE IS " _; SC .; "
., " ; TR • RETURt·l

If you prefer the score as a percentage then amend line 1040 as follows:

1 040 PRIHT '"/OU HAI/E HAD " _; J tH((
SC/T�·)t 1 00); "% CORRECT" • RETURfl

How many questions?
As it stands the program will ask one question of each type in sequence, ad
infinitum. We can limit the number by defining the number of questions
NQ as a variable.

1 0 HQ=32

Each time a question is asked, NQ is decreased by l. and when NQ=0 the
test ends (after eight questions of each type have been answered).

1 50 I F NlD0 THHl 20
1 60 END
1 0 1 0 INPUT IP · TR=TR+l • t·lQ=NQ-1

I l l

Arrijkia/ h//dlix1·m·p u11 thl' Drax,m

Shifting the emphasis
If we are going to bias the questions if favour of areas of difficulty. then we
need to keep a record of performance in each individual area. We therefore
need separate variables for each type of question (AD for addition, SU for
subtraction. MU for mul1iplication. and DI for division). These variables
are defined in terms of one eighth of the total number of questions to be
asked NQ.

HJ Hr•=32 ' AD,,f·lP/8 SU=AD • MIJ'-"AC• D I =
Fl[)

Now if the correct answer C is the same as your answer IP then an
increment variable IN is set 1 0 - J . CORRECT is printed, and the routine
returns. Otherwise IN is set to I. and WRONG is printed followed by the
correct answer.

H l20 I F c,0 J P THEM Hls=-1 • PR I HT " C
ORRECT " • RETURH
1 0313 I M= ! • PR IM T " WROHG , COR!l'ECT
AHSWER �JAS " , C
1040 �:ETui;,r.1

IN is added to the appropriate individual number of questions variable
AD. SU. MU or DI on returning. producing an increase in this value if the
answer was wrong. or a decrease if the answer was right.

40 SG$= " + " • C=R+B • GCJSU8 ! 000 • RD"A
D'+ I M
? 0 SG'li= " - " • C=A-B • GOSUB 1 1300 • SU=S
I.J + IM
1 00 SGit: = " 1: " · C=A:f.8 • GOSUB l f)B"-1 • MU=
MU+ I H
t :30 SG'li= " / " • C=A/B · GDSUB 1 000 , r, J =
D I + IM

Now we add to check to sec whether all the ques1ions of a particular type
have not been correctly answered (eg AD'.>0. see Flowchart 9.1). If all
questions of one type have been correctly answered. then no more of this
type will be asked as the line is jumped over. lf thc appropriate number of
each type has been answered correctly (AD=9. SU=0. MU=0. 01=0)
then the program ends.

40 I F AD >0 THEN SG'li=" + ".: 1>,R+B , GO
SUB Hl00 • RD=AD+ IN

112

Chapter 9 A11 l111eflixn11 1i.•ach,,,

70 I F SU>fl THEN SG'll= " - " • C=A-B • GO
SUB 1 000 • SLJcSIJ+ I M
100 I F MU>0 THEN SGl" " :t " • C=A:tB • G
OSIJ8 1 000 , f•fU�MU+ I N
1 :it0 I F D I >0 THEtl SG'li""/" , C"A/B • G
OSIJB 10m:i , D I =Co ! + rn
1 40 I F AD=0 AH[) su�0 AHD MU=0 At·!
[, D I �0 THEN 1 60

� - - - - -t

Flowchart 9.1 l11tellige111 Teachrr

No1icc 1hat you arc no longer asked ques1ions about areas in which you
have correctly answered four questions without making any errors. If you
make a mistake then AD. etc. will be increased and so you will have to
answer more than four correctly before AD reaches zero.

I l l

Anijidul /111dlige,we u11 the Drugu11

Degrees of difficulty
How about making the questions easier or harder according to how well
you arc doing (ie the values of AD, SU, MU, and DI)? So far the current
values for A and B have always been between 0 and 9 as they were produced
by RND(0)* I 0. but we now need to bias the numbers produced for the
questions towards higher values. if you are correct. and lower values, if you
are incorrect. At the same time. we must ensure that you do not produce
negative values if your performance is abysmal.

The ·worst case' will be if you get all the questions right in three of 1he
groups. and all the questions wrong in the last group. In this case only four
questions will be asked on the first three groups. leaving 32-(3*4)=20
questions to be asked on the last group. In addition we must remember that
X (eg AD) starts at a value of 4. so that the maximum value of X which
could be obtained is 20+4=24.

We therefore set up a weighting variable WT. which is calculated by
subtracting three times the number of questions to be asked in each group
(J*AO) from the total number of questions NQ and adding back on the
number of questions in a group AD at the start.

WT=NQ-(l' AD)+AD

This is more simply expressed as:

WT=NQ-(2'AD)

1 r, H0,,3? Al,=II0.···2 , ,31_1°,fi[:, t·lU"A[, , D l "
Fi() �JT o:tlO-(?:t:fi[))

We now replace the fixed value of ten by the difference bctwen WT and X.

To begin with. WT= 24 and X= 4 so numbers between 0 and 1 9 will be
selected. If a correct answer is given. then X will be reduced 10 3 and
numbers between 0 and 20 will be chosen. After four correct answers. X will
not change (for this type of question) as it will have reached zero and the
line will be skipped. The last values will therefore be between 0 and 22.

On the other hand if the first answer is incorrect then X will increase by I
and the range of numbers produced reduced by 1 (0-18). In the 'worst case·
X will be increased twenty times to 24 and {WT-X) will fall to zero for both
A and B (so you should be able to solve that particular problem!).

1 14

CHAPTER J O

Putting I t All Together

In the previous chapters we have dealt. from first principles, with various
aspects of Artificial Intelligence. In this final chapter we have linked
together many of these individual ideas in a single complete program.

The original 'intelligent' program was the famous 'ELIZA·. which was a
pseudo-psychiatrist program written to send up a particular style of
psychiatric therapy. We have resisted the temptation to follow this lead and
have opted instead to produce a rep lacement for the average computer
salesman. This program combines some ideas on the processing of natural
language and on expen sys1ems. to produce a result which should both
understand your requests and make suggestions which iake into account
both your requirements and a number of hard commercial facts.

Enough words and values have already been included to make the
program interesting, but you can easily customise it by adding your own
ideas to the DATA. (We take no responsibility for the values included so
far. which are for demonstration purposes only. or for the views on particu­
lar machines expressed by the program!) The program itself is quite
complex but it follows the methods described earlier in the book and
the functions of the various line variables and arrays are given in
Table 10. 1 .

Making conversation
The format of the program is that you are asked for your views on each of a
number of possible features in turn (the exact wording of the question
being selected at random from a selection of phrases). Note that the key
word or phrase is inserted into the sentence where necessary. and that the
correct conjugation is applied.

Your input is examined in detail for keywords. and a rule array updated
according to your requests. (If you wam actually to watch the rule array
being updated then delete line 5490.) Many of the keywords are truncated
so that one check can be made for a number of similar words. and a test is
included to see if the matching string is at the start of a word.

The simplest answer is 'YES' or 'NO', which adds or subtracts I from the
rule for that feature. If you mention the name of the feature (eg
·GRA P H ICS') then a further I is added to the rule. In addition. usmg a

I 1 5

A rtificial /11/i'lliKt'll/'I' on the Dra;.:rm

Table 10.1 .!\.fain Variables in ·Salesman·

SIMPLE VARIABLES

QP no. of question sentences
Q no. or questions
R no. of rules
BB bank balance
PH phrase number
PH$ phrase words
M match marker
OF object flag
OM object match
LD like/dislike
FS rest or sentence pointer
NP negative pointer
S I AND match pointer
S2 BUT match pointer
RU rule update marker
08 no. or objects
AJ no. or adjectives
AV no. or adverbs
LI no. or likes
DL no. or dislikes
NJ no. or negative adjectives
NV no. or negative adverbs
HM no. or cheap/expensive
co no. or computers
FE no. or features
CT no. or co:;t ratings
CS no. of cost suggestions
EX no. or excuses
HI no. of high price suggestions
LO no. or low price suggestions
TC total cost
TP total profit

1 1 6

Chapter 10 P1111ing It All Together

ARRAYS

08$(08) objects
AJ$(AJ) adjectives
NJ$(NJ) negative addresses
AY$(AY) adverbs
NY$(NY) negative adverbs
L1$(LI) likes
DL$(DL) dislikes
Q$(Q) question objects
QP$(QP) question sentences
CR(Q) cost rate
PR(Q) profit rate
IC(Q) total cost
IP(Q) total profit
HM$(HM) cheap/expensive
R(R) rules
CO$(FE) computer names
FE(CO,FE) feature names
C(CT) cost ratings
CS$(CS) cost suggestions
EX$(EX) excuses
Hl$(HI) high messages
L0$(LO) low messages

'positive' adjective or adverb adds to the rule, whilst a 'negative' adjective or
adverb subtracts from the rule. Separating the words into different classes
allows you to make more than one change to the rule at the same time.

Thus:

YES adds one

YES BASIC adds two

YES BASIC NECESSARY adds three

YES GOOD BASIC NECESSARY adds four

Whilst:

NO subtracts one

NO MEMORY subtracts two

1 17

Arrifidal lnrelligence on the Dragon

Furthermore, verbs are grouped as 'likes' and 'dislikes', the last of which
reverses the action of the rest of the words.

Thus:

I DETEST MACRODRIVES subtracts one

Both 'NO-' and 'N'T' are recognised, and most double negatives are
interpreted correctly.

Thus:

I DON'T LIKE SOUND subtracts two

I DON'T DISLIKE SOUND adds one

If anything appears at the start of a sentence and is followed by a comma, it
is usually cut off and effectively ignored.

Thus:

NO, I DON'T WANT GOOD SOUND subtracts three

The exception is when 'AND' or 'BUT are included, when both parts of the
sentence are acted on independently.

Thus if the question is:

DO YOU WANT GRAPHICS?

and the answer is:

NO, BUT I WANT GOOD SOUND

then one is subtracted from the graphics rule and two is added to the sound
rule.

If the program does not find any keywords in the input, it politely asks
you to try again:

PARDON, EXCUSE ME BUT. .

The program can only cope with one feature at a time, so if you try to ask
for 'SOUND and GRAPHICS' at the same time, for example, you will get
a request for a repeat of the question.

HANG ON - ONE THING AT A TIME

However, i t is possible to make comments about single features that you
are not being asked about at the time, and these entries will still update the
rules (as in the 'BUT' example above).

1 1 8

Chap/a JO Pu11it1K II Alf To!(etha

(1)

1 19

An/fii-ial lmelligcnn' mi 1h,, Dragon

(1)

120

Chapter 10 P1111inK It All To!{ether

(2)

1 2 1

An/fkiul l111e/ligM<"I' on the Dragon

122

Chapter 10 Puuing II All Tvxeihu

(+)

123

An//kiu/ /111d/i1fo1n• m1 the /Jru1fUII

Decisions
In addition to the rule array, there are two other arrays which arc linked to
this. The first is the 'cost array', which gives an indication of the cost of this
particular option, and the second is 1he 'profit array' which indicates to the
salesman how much effort it is worth pulling into selling this feature. The
values for these last two arrays are produced by multiplying the conient of
the corresponding rule array e lement by factors en1ered originally as
DATA in lines 10 1 00. etc, where the format is:

(phrase describing feature, cost, profit)

After each input. the salesman considers the consequences of your
requests. First of all he looks to see if the sum total of the cost of all your
requirements exceeds your bank balance. If so. he prints out one of a series
of caustic comments on your credit-worthiness like:

THIS SPECIFICATION SEEMS TO BE EXCEEDING YOUR
CREDIT LIMIT

He also looks at how much profit he is likely to make on the sale so far :
if this d rops 100 low. he will start to lose interest and come up with
comments like:

I HAVE AN URGENT APPOINTMENT

or

WE CLOSE IN FIVE MINUTES

At the same time, he will be more helpful with regard to which of the
available computers will fit your requirements. drawing up a short-list by
comparing the rating given originally to this feature in the
description of each computer with the value you put on it. The format
for the descriptions is:

(name, value of feature I. value of feature 2, value of feature 3. etc)

The highest rated machine will always be picked out first but, if possible. at
least three machines (possibly with lower ratings) will be selected and the
final choice is made from these. Either the highest or lowest cost computer
(at random) will be selected for mention. for example:

IF YOU WANT A REAL ROLLS-ROYCE THEN JUST LOOK AT
THE . .

124

Chap/er /0 P1111ing It All Toiether

and

IF YOU ARE IN THE BUDGET MARKET THEN WHAT ABOUT

THE . .

I f only one machine fits the bill, the program will come u p with:

YOUR ONLY OPTION IS THE . .

Salesman

1 00 (;OSU8 9"3€1t)
;�Of) PH=Rf!D(i.JF'+ 1 l- 1 • PH$=CJP$(PH) • S
P= H lSTP(L PH'li , " / ") · I F SP A1 THEN
IF L�FT'li(CJ'li(CJ) , 1) � " � " THEM PH'li=L
EFT'li(PH'li, :,,P·· 1)+ ' ' APE " +R I C,Hl$•.: PH'li .,
LEW PH$, -:3P l
308 IF SP >fl AND l.EFT'li(P$(0 l, 1 >= "
!," THEt·l F'H'liA.EFT'li(PH1i., SP-1)+ " I :3"
,R I GHT'li< PH'li, l.EW PH•f; >-SP l
40•J sp,. ItlSTR(1 , PH$, " l " l I F ff' >tI
THEt·l PH'li·,L.EFT'li(PH1i , SP- 1 ;.+ " "+RIG
HT'li(0$(c, l , LEM(1)$(0) l·- 1 .,+p I GHT!li(P
H•t ., LEN(PH'li)-SP l ELSE Pfi'li�PH'li+ " "
+PIGHT'o(I)$(P l , l.Et·K O'li(0 l)- 1 :,
50;;:1 Pl?!NT (• 352 , PH'li; ,. .,. ,.
60':.1 PR I MT ['!! 384) 11 11

.,) : Pf;'. ! HT 1�� :3g4

71)0 l. I tlE JtlPIJT " >" ; rn-.
88'i Hl$=" " + l t-l't LE>= 1 • OF•,- I , ST= 1 ,
NP�8 , RU�0 , M=0 01'1=0 • 2i l =fl , ::;::1�0
·�>.1':I CM�l MSTI?(1 , I N$, " , ") • IF CM=f:I
THFH t600
1 00fl S l = I HSTR(1 , Hl<�, " At·R> ")
1 1 00 S2= I NSTR(1 , I t-l1i, " EIUT ")
1 200 IF S l +S2=0 THEM 1 580
1 30eJ IF LEFT'!;(lt-l'li, 3 J=" ND" THEN
RUJ)=P(0)- 1 • JC(0)c, j C(C D-CR< () l • I P
(0)" I P(0)-PR(0) • c;oro 1 500
1400 R(GJ)=R(P l+ l • J C(O)=!U O)+CR(
O l • I P(O J= ! PC O)+PRC O)
1 Sf)0 I H't=R l C,HT'li(I t1'1i , LEN(I t·l'li >-cr·l >
t 60<1 SP= I HSTR(ST, l t1'li , " YES" l

125

Artificial lmdligence on 1he Dragon

1 700 I F SP ;,0 THEN RU,.RU+ 1 , LD= 1 , 11
= 1 , ST=SP·t 1 GOTO 1 600
1 800 SP= JHSTR(SL IN$, "NO")
1 90"1 I F SP>0 THEH LD=·· l , M=l , ST=S
P+l , �lP=�IP+l • GOTO 1 800
2fl00 SP=I HSTR(ST , IM'li, " H ' T '')
2 1 00 IF SP>0 THEH LD=- 1 ' M=' 1 · ST=S
&>+ 1 , NP=NP+ 1 , GOTO 200•J
;?:c'Oi3 IF NP>0 THEH IF It-H(NP<!)=N
P /2 THEH F:U=RU+ 1 , l[>= 1 ELSE RU=F:U
- 1 , l.[,=- 1
23fl0 FOP t+=8 TO L. I
24rtfJ SP= IHSH:(L rn•i, L I $(t-D) , I F S
P>O THEM IF MIC>$(ltl'li, '1P- 1 ., 1)=" "

THEN LD=Ll)t:1 , 1•1= 1
2500 HE'.',T N
21,C:WJ FOf.' t·l">l TO [)l
2700 SP= I HSH'(1 , IM$, Dl'li(ID) · I F S
P >fJ THEt·I I F MW$(Hl'li , SP- 1 ., 1)="

THEt-1 L.D=LM: - 1 , M= l
,'.'?00 tsE:·ff H
?9.J8 FOR fl=fJ TO 08
30130 SP= I t<STR(1 , 11-l'� ., OB'li<tn) , IF S
P>O THEN IF MID'liC IN• , SP- 1 , l l= " "

THEt·I RU=RI.J+LD OF=M ' 1'1= 1 OM=OM+l
3 1 01:t HE:<T t·I
?200 FOR 11"'0 TO Al/
:3300 SP= IMSTR< 1 ., 1 1-l'li, AV'S(Is)) , I F S
P=0 THEH 3600
:;,11,.113 IF Ml Mi< I N$, SF'-! , 1 >< >" " TH
EH 36>)0
:�500 RU=RU+t.t, , Mc 1
:3600 NEXT 11
?700 FOR 1·1=0 TO HY
'?800 SF'= lt-lSTR(1 , I t-l'li ., tN'li(M)) , IF S
P=�1 THEM 4 Hl0
'?908 I F MW$(HI$, SP- 1 , 1)0 " " TH
EH 4 H l0
4000 U>=l.C>:f-1 , RIJ,,,RU+U> , M= 1
4 Hl0 MEXT t·I
4200 FOP N=B TO AJ
43i'J0 SP= HlSTF'(1 , It-1'/1 , AJ'li(H ;,: , , I F S
Pd) THEM 46>J0
4400 IF M!M(nl'1 ., SP-1 , 1)< ·:," " TH

126

Chap1er 10 P1111i11g /J All Toge1her

EH 46f:J>.J
4500 RU=RU+LD • M= l
4600 flE)(T t,
470>.l FOR H=0 TO tLI
4800 SP� IMSTP(L l tj$, fU'fi0-0 :, • I F S
P=0 THEH 5 10fi
4900 I F i'1 W1'< 11-l'� ., ";P- 1 , 1 >< > " " THE
l l 5 1 <1f)
�;111:li:) LC,=l.Vt:··l • PU= PU+l.D • M= l
co \ 00 IJE;·(T H
5 1 1 0 FOR ll=FI TO HM
c; 1 ?�) :3P = I tl :,;TR(1 , ! IN• , HM'li(H) • IF :,;
P�O THEJl 5 1 90
5 1 30 I F Ml�� l Ht , SP- l Y ' THEH

51 9�J
5 14 [1 :<>(,.,t, I I' >("<< c: THFll PR IHT " CH
FAP AHi) H11�;T'(" • ,:;oru 51 ::'<0
�; 1 5,J IF >('.(>=? THEH PR I HT " PATHEP

l:':>:PEHS I 'o/E "
5 198 HE'.··(T l l
5?0€1 I F M< 1 THEI, F'R 1 HT 1:1 ,:;,o , " PA
H;ot·L, PLEASE E'.'.Cl.J�;E ME BUT " ' GOTO

.>00
:/308 IF OM > ! THl:H PR I IH l� 3:�0., " H
All(; O H - OHE TH HIG R T A T I ME " · GO
TO !}GO�J
S400 IF OF >·· ! THEH R(OF)=W OF l+F:
U • I C<: OF) .; JC(OF)+(CW Ot= /1:F'U l I P•. 0
F >= I P< OF l+(PRC OF lt�J J ELSE RC O J=
R(0)+RU l C(fJ)= IC(0)+(CR(Cl):t:RU) = I
P< o i� r P< o)+(PR((.1 :,:mu)
5490 GOTOS-�08
55€111 CLS
;:<f:.8E1 FOR H.�,:, TO I". • PF: I HT 1, (t·n:3 ::..+
32 , P(fl) .• HE'.<T H
5700 FOR H=0 TO P PR INT � (Ht3 J+
1 ;,f: , IU l·I). IIE:'.T H
'.'i::'>.10 FOR tl=O TO P • Pf< I MT ,, (t·U 3 :,+
::C:;:?4 , I P(tl , ., · l·lE:,:T t·l
5'300 FOP N=0 TD 08
E:r,w-,o Tc�Tc+ r c<: H ::,
6 1 00 TP�TP+ I POn
6200 HE'.'.T H
6300 IF TF�Ot5 THEN T»•RHD(B)tEX

1 27

Anifiduf lmdfif(t'llfl' 011 1111' IJro,:011

' PR i tH . PRHn E:<'li(rn)
,,480 I F TC >ff; THEt·l PT=Ptll:•(,J):tcs '
PR INT • PPINT CS'li(F� l
,s50.:, rc,,o · TP••.i
67.:10 FOR :,:�? TO 0 STEP- 1 , PO$"- " "
6:30fJ FOR t·l=0 T O CO
690>) IF FE(t·L O) -R(,;,) >:·'. THEM PO$=
PO'>+R I GHPt(STR'li(14) , 1 l • J1=H
700t1 t·lE:•<T N
7 !l'Jl'J IF PO't" " " THEM NElff X • GOTO
7200
;'1 10 IF LEW PO'f;)< 3 THrn flEXT X
?��00 CLS
7300 PR! tH l� 0, " " ,
7:3 1 0 GOT07':<0fl
?:35fl PRWT PO$
,'400 IF PO'lo= " " THEt·l ':<:W0
7500 FOR H= 1 TO LEW PO'$)
,'600 PR I t4T CO'lo(Vl1L(M !D'li(PO$, fL 1)
))
7700 flE>n fl
?808 PR I NT
7900 T:,=0 • B',= 1 ,i
80�Ji:J FOR CH=0 TO LEH(PO$ l- 1
8 H l0 HC,.,\IAL(M I D'li(PO'li , CH+ l , 1))
9:?08 I F C(NC »=TS THEH TS=C(NC) •
H I=t·IC
:3300 I F C<HC)(=>8S THEH BS=C< HC) •
LO,.,HC
:?400 HE:<T CH
84 1 0 IF Hl ,,,L.O THEt·l PRi tH" '1'0UR OH
l.'o' OPTION IS THE" PR I NT CO'li(HI) •
c;oro ':<200
:3500 HI 'li=CO'!;(HI) • LO'li=CO'J(LO)
860"1 SE=RHD(2)
:i/700 SL. =RMDC 3)-1
8800 I F SE=2 THEM '3 1 00
9900 PR I NT H I $(Sl.) , , H I'$
?000 GOTO '.'!201'J
9 Hl0 PR I HT L.O'li(SL l , , L.O$
"'200 P�P+ l • I F 0<20 THEM W0 ELSE

EH[)
9300 OP=5 , Q= 1 9 • P.41 , OB-=R • AJ=8 • AV=
5 • L. ! =3 • DL=3 • HJ=8 • NV=2 • HJ1=3 • DI J1 0

12 8

Chap11•r /0 Pu11inf(It All fof(('lht'r

B!li(0B) , A.J'li(AJ) , H.J'$(t·LI) , AV!li(Al/) , N
V'!;(HV) , LI 'Ii(L I) , DL!fi(DL) , O'fi(Q) , R(R
) , 0P�(QP) > CP(0) , PP(Q) , 1 C(Q) , I P(Q
) , HM'I:(HM ::, : E·E: � 108
'3'401) [)ATR BAS I C , GPAPH 1 1; , soutm, KE
'(BOAR[, , FUHCT I OH, MEMORY , TAF'E , MACP
O[:,p l 'JE , I) I ::;c: , :=:OFT WARE ., CAPTR I PGE , ._I
OYST I C¥ , ASSEMBL , CEHTROH ! C , RS232 ,
E'.<PAHLl , tlETWJPK , 1 6-E' I T , MUL. T I TRSf'. ,
,,ER'./ !CE
''•51:WJ DATA GOO[:• , E'·.·:ci=.L , ":UPER , MAGIH
F , F I �·ST . FAST , EFF l C , ESSEHT , L.OT
96ml DflTA PA[:o , RUBB ISH ., POOP , SL.OW,
I HEFF I C ' l"rn ' vJOP':: ' L.EA:,: T , LE%
'37,JO r,Arn PEAL , 1/EV(, OFTEM , FF:EO , t·l
ECE:::�: ., TPU
':<:::i::,i::1 [:•ATA HE'._IER , UHHECEs:3, I tlFPEO
4•3,:1f) DmA WAHL L.l KE, HEED , REOU !PE
1 i10>JfJ [:oATR HATE , [, I SL. I b:E , LOATHE , [:,
ETE:';T
10 100 DATA �GOOD BAS I C , 5 , 2 , RGRAP
H I CS , 7 , 2 , �SOUt�D , 6 , 2 , tA GOOD �EYB
OAR[) , 4 , 2 , �FlJNCT I ON VEYS , 1 , 5 , �R L
ARGE MEMORY, 3 , 6, t-fi TAPE I tHEPFAC
F. , ? ., ;,· , RMACPODR I './ES , ? , 4, C>[:, J SC::: , 5 ,
:? ·' u.:•:Trns I V E SOFTWARE . I) ' •:, ·' i,A CAR
TP I D1�E PORT , 1 , 6
1 ,i:?00 DATA '.A ..IOYST I O'. PORT, 1 , 7 ,
/,AM A,:SEt18LER ., ;> , 1 , !,A CEHTPOt·l I CS
PORT) ;?. .. S .. �AH R�;2�::::· PORT . . 2, 6 , ��EXP
AtlDAB I L Ti, ;> , 9, ,,_.fJEHKIRKIHC., 3 , 4 , 1,R

1 6-8 I T CPU, I ,. 7 , /,MIJL.T I TRSf'. HlG , 5 ,
5) �.-GOOD SERV ICE .• 1 ., 9
HB0fJ C•RTA MOUL.[, YOU L.l KE , ,lHAT R
BOUT ' HOW RE'OIJT ' r,o '(OU ,lRHT ' ()I) YO
U REOU IRE , ,·' :t HH>ORTRIH
H i:3 1 0 C•f

f
lA CHEAP, !HEe(PEHS I './E

1 0320 DATA C:•EAR , rnPEHS IVE
1.fl4�JO FOF' M=0 TO 08 ' PEAD 08$(t·l)
ME:n tl
1 eJ508 FOP ,1�0 lO R_I · PEAD R_I'!;(tn ·
t-lE'.'.T t·l
1 o,;m) FOP t·l�.i TO ILi F'.EA(, ILi');(M)
f·lrnT t·l

129

Artificial l111effigence on 1he Dravm

1 070>) Fi:W t·l=0 TO A11' · PEAL:• Al/'>(H) •
t,D'.T H
1 0880 FOR �·0 TO HI/ READ Hl/$(H)
HE:·,T t-J
t W:'fJ0 FOR t·l=O TO U • RE Al• L I •JiOP
t·lE>:T t·J
1 1 00•J FOR t·l•0!'J TO L•L READ L:•L 'Ji(H)
HD:T t·l
l \ 1 00 FOR t-l=B TO O , READ O'li(tl) , CR
t t,) , PR(H l HEXT H
1 1 ?00 FOR t·,=13 TO 1,JF' REfl[:• PP'li.:: H) •
HE>'.T t,
1 1 ? 1 0 FOP H=D TO HM READ HM'li.:: IL• ·
tiE: •:T tl
1 1 ?DO CL�; • 0=8
1 1 40D PP I t-ff " I T 1 S M'r' PLEA::;IJ,:E T
0 v!ELCOME \'OU TO THE MUL T IMEGA M
I CR0:3TORE"
1 1 500 PRIH T " WE ARE Utff)C11.18TE[,L"/ r
HE ULTI MATE SOUF'CE OF ALI_ COMPUT
FF: PRODUCTS AHD I ;:;HALL HAVE GRE
AT PLEASUPE Ill HELP !HG '/OU SELEC
T \'OUR t·lEl•l MACH HlE"
t 1 6f)0 PR IHT" so THAT I CAI, ,mn: 0
UT THE BEST COMPUTER FOR YOUR PA
R T I CULAR t�EEC,S PERHAPS '/OU ,10
uu, BE t< It![• EtlOIJGH TO At·t,;;JER A F
Efl F'UESTI OHS"
1 1 m,1 P R rt-n • F·1;, I tH " ARE '/IJU REAC:•'l' "

(1B00 C0=9 • FE= t 9 CT=·;1 , c, m CO'li(F'E
) , FE.:: CO , FE J , DF(CO , FE) , C(CT)
1 1 '300 DATA .JCN PC ., 7 ., ::: , 8 ., 9 , 2 , 8 ., e .,
8 , 9 , 9) 7) 7 , � , 7 , 6 , 8 , 8 1 9, 9 , 9
l ?000 [,ATA �'.NACT SER I OU::; , 6 ., ? , 6 ., :3
1 8 , 8 , 8) 0 , 9 , 8, 0 , 0 , 0 � ? , 6 , 8 , 8 , 9 , 9 , 7
l ," H lf.i DATA CLEARSitl MT , 9 , 9 ., 9 , ? , 7
, 9 , 8 , 8 , 9 , 6 , 7 , 7 , 0 , 7 J 6 J 7 J 9 ; 9 , 9 , 1
1 2?00 [,Arn fiCHROII I U Uf; J ot! , :c , ? ., 6
, 6 , 0 , 3 , 7 , 0, 5 , 5 , 0 , 0 , 6 , 0 , 0 , 4 , 1 , 0 , 0
, ?
1 23flfl l:•ATA 8AHAHA I I E , 3 , 5 , 2 , 5 , 8 ,
4 , 6 , 0 , ? , 0 , 3) 5 , 0 J 0 , G , 7 , 8 J 8 , 8 , 4
1 ?400 DATA S I EL I TE , S , S , S , 7 , 7 , S ,

1 30

Chap/er JO Pulling II Afl To,:e,her

2 , 0 1 7 , � . 7 1 4 , 0 1 0 , 6 , 8 , 0 , 0 , 8 1 8
1. ?500 C,ATA COLECT0\1 I f: I OH CABE'RGE

. �J , ·:=i ., fL tl
L�,:,00 [:•ATA CAHl)'r' C:OLOUPE[:< COMF'l..11
ER , 7 , 6 , 4 , 2 , 0 1 2 , 7 , 0 , ,l) 9 , 8 , ? 1 8 , 0 , G
, 3 , 0 ., f:1 , i;.i , 6
l ??iJ>J [,Arn C01·1i'tlll'•EAI". 6·! , 2 , :� , 9 , ? ,
7 1 6 , 5 1 8 , 6 , 9 1 G , 7 1 0 1 0 1 ? 1 2 1 0 1 0 1 0 1 6
1 ?800 DATA ATP ! A 600GT , 1 , S , 8 , 5 , 0
, 2 . 5 , A 1 7 . 7 , 7 ., 7 1 8 , 1J , 6 , 6 1 8 1 8 , 0 , 5
1 2�00 DAl"A 1 0 , 9 1 7 , 3 , 8 , 4 , 6 , S , 2 , 1
1 ?000 FOP H,(1 TO CO
I ,: l 00 PEAC• co•t(H :·,
1 ??•:tf) FOP M�(1 TO FE
I ;:;,,n) i;:EA(:• FE(l·l , M >
1 :?40r1 t-�E.::�T M, H
1 :35£10 FOP 1-1�0 TO CT
1 ?600 PEAC• U l·l >
1 ?7fWr t-JE'.;T H
1 ?800 A'li� LtW:E'/'P I F A·�= " " THEil I ?
:?�lfJ
t3·�f:U:1 DATA I TH !MK ··,'OI_I APE GETT !
l·lC, OUT OF '/OUR F'P I CE Pf11·K;E , TH I S

SPEC ! F I CAT I OH SEEMS TO B E EXCE
ED I HG '/OUP CPED l T L J M ! T , I C•OH' T
THIHK THAT YC� CRH AFFORD S
UC:H L.IJ'··:UP !ES
1 ,100>:l [)ATR E ! 'CU':':f:: Ml'. I CAi l HEAP
rHE F'HrJl·lE PI I-JG I l·lC . I HAVE AH Ul?G
nn APPO J t.HMEtn . (•JE. CLO:::E rn F l './E

M I I RITE:::
1 4 1 00 r::s�? • EXa? D I M 83'f;(CS ' D I M
E>�'fi(E :·<)
\4?.0<'l FOF' t·J·00 TO c,3 · PEf1C• CS'!(l·l ::, •
HE:·:T H
1 43,m mi;: H=� TO E:� R Ef1C• Ei'.'t-'. lj', ·
tlE:··'.T rl
\ 4400 [>Alf'! IF YrJU APE ltl THE BUI>
r�ET MAPVET THEN vlHAT AE:OIJT THE, A
H ltiE:":Pi::t· lS I VE CHO ICE I S THE .• YOU
GET GOOD \IAL..UE FOe'. MOllE'i' vH TH

THE
1 4500 l)ATA IF 'r'OU vJAIH f1 F I F::::T -C

13 1

Art(/idal lmdliJ!,1'111"1' 1111 1}w Dru,:011

LASS PRODUCT THEH 'iOU MUST
TPY TH[, FOR STHTE OF THE ART TE

CHI-IOLOG'l \'OU CAt·l ·' T t!FAT THE , IF 'r'
IJIJ Wf,HT A ROLLS-�:O\'CE THf::H JUST

l.Om(AT THE
1 461:WJ H I �2 · LO=? , [; J M H I $(H I ;, , LO'li(
LO)
I •P80 FOR t-l=O TO L.O READ LO$U-D ·
HE:<T H
1 4900 FOR t·!,,,'J TO H I , RERC• H I $(PP
t-ien H
1 4900 CL,; , RE TORN

Commentary
Lines 200-440: Pick the words to be used in the next question, and select the
correct conjugation.

Lines 500-800 : Set up your INPUT and reset variables.

Line 900: Checks for a comma.

Lines 1000-1200: Check for 'AND' and 'BUT' If neither of these is present
the program jumps to line 1500.

Line 1300: Updates the current rule negatively if 'AND' or 'BUT arc
present and the fi rst word is ·NO'

Line 1400: Updates the current rule positively if'AND' or'BUT are present
and the first word is not 'NO'.

Line 1500: Deletes anything preceding a comma.

Lines 1600- 2 100: Check for 'YES', 'NO' and "NT and update the current
rule accordingly.

Line 2200: Checks for a double negative.

Lines 2300-2500: Check for 'likes·

tines 2600-2800: Check for 'dislikes·.

Lines 2 900- 5100: Similarly check for objects. adjectives and adverbs.

1 3 2

Chapter /0 Pulling II All Toge1her

Lines 5110-5190: Check matches for high and low cost key words.

Line 5200: Checks for no ma1ch and reports.

Line 5300: Checks for more than one object.

Line 5400: Updates the current rule, or another rule, according to whether
or not the object matches the current question.

Line 5490: Jumps over the print-out of the rules.

Lines 5500-5800: Print out the rules.

Lines 5900-6200: Update the total cost and total profit values.

Line 6300: Prints an excuse if the profit seems too low.

Line 6400: Prints a warning if the spending is too high.

Line 6500: Zeros the total cost and profo values.

Lines 6700-7120: Search for computers which match your requirements.

Line 73IO: Jumps over the print-out of matching machines.

Lines 7350 -7800: Print out the matches.

Lines 7900-8400: Pick the highest and lowest priced machines which match
the specification.

Line 8140: Checks if only one machine was selected.

Lines 8500-9100: Print out the name of either the highest or lowest priced
machine.

Line 9200: Updates the feature to be checked and returns for another input.

Lines 9300-11300: Enter the information on features, keywords, costs and
profits.

Lines 1 1 400-1 1 700: Pro\lide an introduction.

Lines 1 1800-13800: Enter the information on the names and virtues of
particular machines.

133

Ariijidal /n1dligence on the Dragon

Lines 13900-14300: Provide warnings and excuses.

Lines 14400- 14900: Contain the words for high and low cost messages.

The rest is up to you
Artificial Intelligence is a fascinating subject, and we trust that we have
given you enough information to get you started on your own experiments
in this area. We have certainly enjoyed making our own explorations whilst
putting this book together, but we have started to wonder how long it
will be before someone designs an expert system program which writes
books .

134

Other titles from Sunshine

SPECTRUM BOOKS

Spectrum Adventures
A guide to playing and writing adventures
Tony Bridge & Roy Carnell
ISBN O 946408 07 6

ZX Spectrum Astronomy
Maurice Gavin
ISBN O 946408 24 6

Spectrum Machine Code Applications
David Laine
ISBN O 946408 17)

The Working Spectrum
David Lawrence
ISBN O 946408 00 9

Master your ZX Microdrive
Andrew Pennell
ISBN O 946408 l 9 X

DRAGON BOOKS

Advanced Sound & Graphics for the Dragon
Keith & Steven Brain
ISBN O 946408 06 8

Dragon 32 Games Master
Keith & Steven Brain
ISBN O 946408 03)

The Working Dragon
David Lawrence
ISBN O 946408 0 I 7

The Dragon Trainer
A handbook for beginner�
Brian Lloyd
ISBN O 946408 09 2

£5.95

£6.95

£6.95

£5.95

£6.95

£5.95

£5.95

£5.95

£5.95

135

Sunshine also publishes

POPULAR COMPUTING WEEKLY
The first weekly magazine for home compu1er users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-che­
minutc details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, advemurc corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and 01her popular micros. Only 35p a week,
a year's subscription costs £ 19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER
The monthly magazine for all users of Dragon microcompu1ers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the lates1 news related to the Dragon. A year's
subscription (1 2 issues) costs £ 1 0.00 in the UK and £ 16.00 overseas.

MICRO ADVENTURER
The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of at\ the software available and programming
advice. A year's subscription (1 2 issues) costs £ 1 0 in the UK and £ 16
overseas.

COMMODORE HORIZONS
The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year's subscription costs £ 10 in the UK
and £16 overseas.

For further information contact:
Sunshine
1 2 - 1 3 Little Newport Street
London WC2R 3LD
01 -437 434)

1 36

	1
	lc-n001
	lc-n002
	lc-n003
	lc-n005
	lc-n006
	lc-n007
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	z

